MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gidval Structured version   Visualization version   GIF version

Theorem gidval 30197
Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
gidval.1 𝑋 = ran 𝐺
Assertion
Ref Expression
gidval (𝐺𝑉 → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
Distinct variable groups:   𝑥,𝑢,𝐺   𝑢,𝑋,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem gidval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐺𝑉𝐺 ∈ V)
2 rneq 5935 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
3 gidval.1 . . . . 5 𝑋 = ran 𝐺
42, 3eqtr4di 2789 . . . 4 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
5 oveq 7418 . . . . . . 7 (𝑔 = 𝐺 → (𝑢𝑔𝑥) = (𝑢𝐺𝑥))
65eqeq1d 2733 . . . . . 6 (𝑔 = 𝐺 → ((𝑢𝑔𝑥) = 𝑥 ↔ (𝑢𝐺𝑥) = 𝑥))
7 oveq 7418 . . . . . . 7 (𝑔 = 𝐺 → (𝑥𝑔𝑢) = (𝑥𝐺𝑢))
87eqeq1d 2733 . . . . . 6 (𝑔 = 𝐺 → ((𝑥𝑔𝑢) = 𝑥 ↔ (𝑥𝐺𝑢) = 𝑥))
96, 8anbi12d 630 . . . . 5 (𝑔 = 𝐺 → (((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
104, 9raleqbidv 3341 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
114, 10riotaeqbidv 7371 . . 3 (𝑔 = 𝐺 → (𝑢 ∈ ran 𝑔𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
12 df-gid 30179 . . 3 GId = (𝑔 ∈ V ↦ (𝑢 ∈ ran 𝑔𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)))
13 riotaex 7372 . . 3 (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ V
1411, 12, 13fvmpt 6998 . 2 (𝐺 ∈ V → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
151, 14syl 17 1 (𝐺𝑉 → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  ran crn 5677  cfv 6543  crio 7367  (class class class)co 7412  GIdcgi 30175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-riota 7368  df-ov 7415  df-gid 30179
This theorem is referenced by:  grpoidval  30198  idrval  37188  exidresid  37210
  Copyright terms: Public domain W3C validator