![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gidval | Structured version Visualization version GIF version |
Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gidval.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
gidval | ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3490 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
2 | rneq 5938 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
3 | gidval.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 2, 3 | eqtr4di 2786 | . . . 4 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
5 | oveq 7426 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑢𝑔𝑥) = (𝑢𝐺𝑥)) | |
6 | 5 | eqeq1d 2730 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑢𝑔𝑥) = 𝑥 ↔ (𝑢𝐺𝑥) = 𝑥)) |
7 | oveq 7426 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑢) = (𝑥𝐺𝑢)) | |
8 | 7 | eqeq1d 2730 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑢) = 𝑥 ↔ (𝑥𝐺𝑢) = 𝑥)) |
9 | 6, 8 | anbi12d 631 | . . . . 5 ⊢ (𝑔 = 𝐺 → (((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
10 | 4, 9 | raleqbidv 3339 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
11 | 4, 10 | riotaeqbidv 7379 | . . 3 ⊢ (𝑔 = 𝐺 → (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
12 | df-gid 30317 | . . 3 ⊢ GId = (𝑔 ∈ V ↦ (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) | |
13 | riotaex 7380 | . . 3 ⊢ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ V | |
14 | 11, 12, 13 | fvmpt 7005 | . 2 ⊢ (𝐺 ∈ V → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
15 | 1, 14 | syl 17 | 1 ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 Vcvv 3471 ran crn 5679 ‘cfv 6548 ℩crio 7375 (class class class)co 7420 GIdcgi 30313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fv 6556 df-riota 7376 df-ov 7423 df-gid 30317 |
This theorem is referenced by: grpoidval 30336 idrval 37330 exidresid 37352 |
Copyright terms: Public domain | W3C validator |