| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gidval | Structured version Visualization version GIF version | ||
| Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| gidval.1 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| gidval | ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
| 2 | rneq 5900 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
| 3 | gidval.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 2, 3 | eqtr4di 2782 | . . . 4 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
| 5 | oveq 7393 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑢𝑔𝑥) = (𝑢𝐺𝑥)) | |
| 6 | 5 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑢𝑔𝑥) = 𝑥 ↔ (𝑢𝐺𝑥) = 𝑥)) |
| 7 | oveq 7393 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑢) = (𝑥𝐺𝑢)) | |
| 8 | 7 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑢) = 𝑥 ↔ (𝑥𝐺𝑢) = 𝑥)) |
| 9 | 6, 8 | anbi12d 632 | . . . . 5 ⊢ (𝑔 = 𝐺 → (((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
| 10 | 4, 9 | raleqbidv 3319 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
| 11 | 4, 10 | riotaeqbidv 7347 | . . 3 ⊢ (𝑔 = 𝐺 → (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
| 12 | df-gid 30423 | . . 3 ⊢ GId = (𝑔 ∈ V ↦ (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) | |
| 13 | riotaex 7348 | . . 3 ⊢ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ V | |
| 14 | 11, 12, 13 | fvmpt 6968 | . 2 ⊢ (𝐺 ∈ V → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
| 15 | 1, 14 | syl 17 | 1 ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ran crn 5639 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 GIdcgi 30419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-gid 30423 |
| This theorem is referenced by: grpoidval 30442 idrval 37851 exidresid 37873 |
| Copyright terms: Public domain | W3C validator |