![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gidval | Structured version Visualization version GIF version |
Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gidval.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
gidval | ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
2 | rneq 5950 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
3 | gidval.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 2, 3 | eqtr4di 2793 | . . . 4 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
5 | oveq 7437 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑢𝑔𝑥) = (𝑢𝐺𝑥)) | |
6 | 5 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑢𝑔𝑥) = 𝑥 ↔ (𝑢𝐺𝑥) = 𝑥)) |
7 | oveq 7437 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑢) = (𝑥𝐺𝑢)) | |
8 | 7 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑢) = 𝑥 ↔ (𝑥𝐺𝑢) = 𝑥)) |
9 | 6, 8 | anbi12d 632 | . . . . 5 ⊢ (𝑔 = 𝐺 → (((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
10 | 4, 9 | raleqbidv 3344 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
11 | 4, 10 | riotaeqbidv 7391 | . . 3 ⊢ (𝑔 = 𝐺 → (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
12 | df-gid 30523 | . . 3 ⊢ GId = (𝑔 ∈ V ↦ (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) | |
13 | riotaex 7392 | . . 3 ⊢ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ V | |
14 | 11, 12, 13 | fvmpt 7016 | . 2 ⊢ (𝐺 ∈ V → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
15 | 1, 14 | syl 17 | 1 ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ran crn 5690 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 GIdcgi 30519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fv 6571 df-riota 7388 df-ov 7434 df-gid 30523 |
This theorem is referenced by: grpoidval 30542 idrval 37844 exidresid 37866 |
Copyright terms: Public domain | W3C validator |