MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gidval Structured version   Visualization version   GIF version

Theorem gidval 30448
Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
gidval.1 𝑋 = ran 𝐺
Assertion
Ref Expression
gidval (𝐺𝑉 → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
Distinct variable groups:   𝑥,𝑢,𝐺   𝑢,𝑋,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem gidval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐺𝑉𝐺 ∈ V)
2 rneq 5903 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
3 gidval.1 . . . . 5 𝑋 = ran 𝐺
42, 3eqtr4di 2783 . . . 4 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
5 oveq 7396 . . . . . . 7 (𝑔 = 𝐺 → (𝑢𝑔𝑥) = (𝑢𝐺𝑥))
65eqeq1d 2732 . . . . . 6 (𝑔 = 𝐺 → ((𝑢𝑔𝑥) = 𝑥 ↔ (𝑢𝐺𝑥) = 𝑥))
7 oveq 7396 . . . . . . 7 (𝑔 = 𝐺 → (𝑥𝑔𝑢) = (𝑥𝐺𝑢))
87eqeq1d 2732 . . . . . 6 (𝑔 = 𝐺 → ((𝑥𝑔𝑢) = 𝑥 ↔ (𝑥𝐺𝑢) = 𝑥))
96, 8anbi12d 632 . . . . 5 (𝑔 = 𝐺 → (((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
104, 9raleqbidv 3321 . . . 4 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ∀𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
114, 10riotaeqbidv 7350 . . 3 (𝑔 = 𝐺 → (𝑢 ∈ ran 𝑔𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
12 df-gid 30430 . . 3 GId = (𝑔 ∈ V ↦ (𝑢 ∈ ran 𝑔𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)))
13 riotaex 7351 . . 3 (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ V
1411, 12, 13fvmpt 6971 . 2 (𝐺 ∈ V → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
151, 14syl 17 1 (𝐺𝑉 → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  ran crn 5642  cfv 6514  crio 7346  (class class class)co 7390  GIdcgi 30426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-riota 7347  df-ov 7393  df-gid 30430
This theorem is referenced by:  grpoidval  30449  idrval  37858  exidresid  37880
  Copyright terms: Public domain W3C validator