Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gidval | Structured version Visualization version GIF version |
Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gidval.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
gidval | ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
2 | rneq 5834 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
3 | gidval.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 2, 3 | eqtr4di 2797 | . . . 4 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
5 | oveq 7261 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑢𝑔𝑥) = (𝑢𝐺𝑥)) | |
6 | 5 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑢𝑔𝑥) = 𝑥 ↔ (𝑢𝐺𝑥) = 𝑥)) |
7 | oveq 7261 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑢) = (𝑥𝐺𝑢)) | |
8 | 7 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑢) = 𝑥 ↔ (𝑥𝐺𝑢) = 𝑥)) |
9 | 6, 8 | anbi12d 630 | . . . . 5 ⊢ (𝑔 = 𝐺 → (((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
10 | 4, 9 | raleqbidv 3327 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
11 | 4, 10 | riotaeqbidv 7215 | . . 3 ⊢ (𝑔 = 𝐺 → (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
12 | df-gid 28757 | . . 3 ⊢ GId = (𝑔 ∈ V ↦ (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) | |
13 | riotaex 7216 | . . 3 ⊢ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ V | |
14 | 11, 12, 13 | fvmpt 6857 | . 2 ⊢ (𝐺 ∈ V → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
15 | 1, 14 | syl 17 | 1 ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ran crn 5581 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 GIdcgi 28753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-gid 28757 |
This theorem is referenced by: grpoidval 28776 idrval 35942 exidresid 35964 |
Copyright terms: Public domain | W3C validator |