![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gidval | Structured version Visualization version GIF version |
Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
gidval.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
gidval | ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3462 | . 2 ⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ V) | |
2 | rneq 5892 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
3 | gidval.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 2, 3 | eqtr4di 2791 | . . . 4 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
5 | oveq 7364 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑢𝑔𝑥) = (𝑢𝐺𝑥)) | |
6 | 5 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑢𝑔𝑥) = 𝑥 ↔ (𝑢𝐺𝑥) = 𝑥)) |
7 | oveq 7364 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑥𝑔𝑢) = (𝑥𝐺𝑢)) | |
8 | 7 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑥𝑔𝑢) = 𝑥 ↔ (𝑥𝐺𝑢) = 𝑥)) |
9 | 6, 8 | anbi12d 632 | . . . . 5 ⊢ (𝑔 = 𝐺 → (((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
10 | 4, 9 | raleqbidv 3318 | . . . 4 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥) ↔ ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
11 | 4, 10 | riotaeqbidv 7317 | . . 3 ⊢ (𝑔 = 𝐺 → (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
12 | df-gid 29478 | . . 3 ⊢ GId = (𝑔 ∈ V ↦ (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) | |
13 | riotaex 7318 | . . 3 ⊢ (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) ∈ V | |
14 | 11, 12, 13 | fvmpt 6949 | . 2 ⊢ (𝐺 ∈ V → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
15 | 1, 14 | syl 17 | 1 ⊢ (𝐺 ∈ 𝑉 → (GId‘𝐺) = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 Vcvv 3444 ran crn 5635 ‘cfv 6497 ℩crio 7313 (class class class)co 7358 GIdcgi 29474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fv 6505 df-riota 7314 df-ov 7361 df-gid 29478 |
This theorem is referenced by: grpoidval 29497 idrval 36362 exidresid 36384 |
Copyright terms: Public domain | W3C validator |