| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoinvfval | Structured version Visualization version GIF version | ||
| Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 |
| grpinvfval.2 | ⊢ 𝑈 = (GId‘𝐺) |
| grpinvfval.3 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| grpoinvfval | ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfval.3 | . 2 ⊢ 𝑁 = (inv‘𝐺) | |
| 2 | grpinvfval.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 3 | rnexg 7842 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
| 4 | 2, 3 | eqeltrid 2832 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
| 5 | mptexg 7161 | . . . 4 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) |
| 7 | rneq 5882 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
| 8 | 7, 2 | eqtr4di 2782 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
| 9 | oveq 7359 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥)) | |
| 10 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺)) | |
| 11 | grpinvfval.2 | . . . . . . . 8 ⊢ 𝑈 = (GId‘𝐺) | |
| 12 | 10, 11 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (GId‘𝑔) = 𝑈) |
| 13 | 9, 12 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = (GId‘𝑔) ↔ (𝑦𝐺𝑥) = 𝑈)) |
| 14 | 8, 13 | riotaeqbidv 7313 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
| 15 | 8, 14 | mpteq12dv 5182 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| 16 | df-ginv 30457 | . . . 4 ⊢ inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)))) | |
| 17 | 15, 16 | fvmptg 6932 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) → (inv‘𝐺) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| 18 | 6, 17 | mpdan 687 | . 2 ⊢ (𝐺 ∈ GrpOp → (inv‘𝐺) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| 19 | 1, 18 | eqtrid 2776 | 1 ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ↦ cmpt 5176 ran crn 5624 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 GrpOpcgr 30451 GIdcgi 30452 invcgn 30453 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-ginv 30457 |
| This theorem is referenced by: grpoinvval 30485 grpoinvf 30494 |
| Copyright terms: Public domain | W3C validator |