MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvfval Structured version   Visualization version   GIF version

Theorem grpoinvfval 30039
Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 π‘ˆ = (GIdβ€˜πΊ)
grpinvfval.3 𝑁 = (invβ€˜πΊ)
Assertion
Ref Expression
grpoinvfval (𝐺 ∈ GrpOp β†’ 𝑁 = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ)))
Distinct variable groups:   π‘₯,𝑦,𝐺   π‘₯,𝑋,𝑦   π‘₯,π‘ˆ
Allowed substitution hints:   π‘ˆ(𝑦)   𝑁(π‘₯,𝑦)

Proof of Theorem grpoinvfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvfval.3 . 2 𝑁 = (invβ€˜πΊ)
2 grpinvfval.1 . . . . 5 𝑋 = ran 𝐺
3 rnexg 7898 . . . . 5 (𝐺 ∈ GrpOp β†’ ran 𝐺 ∈ V)
42, 3eqeltrid 2836 . . . 4 (𝐺 ∈ GrpOp β†’ 𝑋 ∈ V)
5 mptexg 7226 . . . 4 (𝑋 ∈ V β†’ (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ)) ∈ V)
64, 5syl 17 . . 3 (𝐺 ∈ GrpOp β†’ (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ)) ∈ V)
7 rneq 5936 . . . . . 6 (𝑔 = 𝐺 β†’ ran 𝑔 = ran 𝐺)
87, 2eqtr4di 2789 . . . . 5 (𝑔 = 𝐺 β†’ ran 𝑔 = 𝑋)
9 oveq 7418 . . . . . . 7 (𝑔 = 𝐺 β†’ (𝑦𝑔π‘₯) = (𝑦𝐺π‘₯))
10 fveq2 6892 . . . . . . . 8 (𝑔 = 𝐺 β†’ (GIdβ€˜π‘”) = (GIdβ€˜πΊ))
11 grpinvfval.2 . . . . . . . 8 π‘ˆ = (GIdβ€˜πΊ)
1210, 11eqtr4di 2789 . . . . . . 7 (𝑔 = 𝐺 β†’ (GIdβ€˜π‘”) = π‘ˆ)
139, 12eqeq12d 2747 . . . . . 6 (𝑔 = 𝐺 β†’ ((𝑦𝑔π‘₯) = (GIdβ€˜π‘”) ↔ (𝑦𝐺π‘₯) = π‘ˆ))
148, 13riotaeqbidv 7371 . . . . 5 (𝑔 = 𝐺 β†’ (℩𝑦 ∈ ran 𝑔(𝑦𝑔π‘₯) = (GIdβ€˜π‘”)) = (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ))
158, 14mpteq12dv 5240 . . . 4 (𝑔 = 𝐺 β†’ (π‘₯ ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔π‘₯) = (GIdβ€˜π‘”))) = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ)))
16 df-ginv 30012 . . . 4 inv = (𝑔 ∈ GrpOp ↦ (π‘₯ ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔π‘₯) = (GIdβ€˜π‘”))))
1715, 16fvmptg 6997 . . 3 ((𝐺 ∈ GrpOp ∧ (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ)) ∈ V) β†’ (invβ€˜πΊ) = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ)))
186, 17mpdan 684 . 2 (𝐺 ∈ GrpOp β†’ (invβ€˜πΊ) = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ)))
191, 18eqtrid 2783 1 (𝐺 ∈ GrpOp β†’ 𝑁 = (π‘₯ ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺π‘₯) = π‘ˆ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  Vcvv 3473   ↦ cmpt 5232  ran crn 5678  β€˜cfv 6544  β„©crio 7367  (class class class)co 7412  GrpOpcgr 30006  GIdcgi 30007  invcgn 30008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-ginv 30012
This theorem is referenced by:  grpoinvval  30040  grpoinvf  30049
  Copyright terms: Public domain W3C validator