MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvfval Structured version   Visualization version   GIF version

Theorem grpoinvfval 30503
Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 𝑈 = (GId‘𝐺)
grpinvfval.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvfval (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑈
Allowed substitution hints:   𝑈(𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem grpoinvfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvfval.3 . 2 𝑁 = (inv‘𝐺)
2 grpinvfval.1 . . . . 5 𝑋 = ran 𝐺
3 rnexg 7898 . . . . 5 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
42, 3eqeltrid 2838 . . . 4 (𝐺 ∈ GrpOp → 𝑋 ∈ V)
5 mptexg 7213 . . . 4 (𝑋 ∈ V → (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V)
64, 5syl 17 . . 3 (𝐺 ∈ GrpOp → (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V)
7 rneq 5916 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
87, 2eqtr4di 2788 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
9 oveq 7411 . . . . . . 7 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
10 fveq2 6876 . . . . . . . 8 (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺))
11 grpinvfval.2 . . . . . . . 8 𝑈 = (GId‘𝐺)
1210, 11eqtr4di 2788 . . . . . . 7 (𝑔 = 𝐺 → (GId‘𝑔) = 𝑈)
139, 12eqeq12d 2751 . . . . . 6 (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = (GId‘𝑔) ↔ (𝑦𝐺𝑥) = 𝑈))
148, 13riotaeqbidv 7365 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)) = (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
158, 14mpteq12dv 5207 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔 ↦ (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
16 df-ginv 30476 . . . 4 inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))))
1715, 16fvmptg 6984 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) → (inv‘𝐺) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
186, 17mpdan 687 . 2 (𝐺 ∈ GrpOp → (inv‘𝐺) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
191, 18eqtrid 2782 1 (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cmpt 5201  ran crn 5655  cfv 6531  crio 7361  (class class class)co 7405  GrpOpcgr 30470  GIdcgi 30471  invcgn 30472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-ginv 30476
This theorem is referenced by:  grpoinvval  30504  grpoinvf  30513
  Copyright terms: Public domain W3C validator