MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvfval Structured version   Visualization version   GIF version

Theorem grpoinvfval 30484
Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 𝑈 = (GId‘𝐺)
grpinvfval.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvfval (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑈
Allowed substitution hints:   𝑈(𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem grpoinvfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvfval.3 . 2 𝑁 = (inv‘𝐺)
2 grpinvfval.1 . . . . 5 𝑋 = ran 𝐺
3 rnexg 7842 . . . . 5 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
42, 3eqeltrid 2832 . . . 4 (𝐺 ∈ GrpOp → 𝑋 ∈ V)
5 mptexg 7161 . . . 4 (𝑋 ∈ V → (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V)
64, 5syl 17 . . 3 (𝐺 ∈ GrpOp → (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V)
7 rneq 5882 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
87, 2eqtr4di 2782 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
9 oveq 7359 . . . . . . 7 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
10 fveq2 6826 . . . . . . . 8 (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺))
11 grpinvfval.2 . . . . . . . 8 𝑈 = (GId‘𝐺)
1210, 11eqtr4di 2782 . . . . . . 7 (𝑔 = 𝐺 → (GId‘𝑔) = 𝑈)
139, 12eqeq12d 2745 . . . . . 6 (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = (GId‘𝑔) ↔ (𝑦𝐺𝑥) = 𝑈))
148, 13riotaeqbidv 7313 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)) = (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
158, 14mpteq12dv 5182 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔 ↦ (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
16 df-ginv 30457 . . . 4 inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))))
1715, 16fvmptg 6932 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) → (inv‘𝐺) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
186, 17mpdan 687 . 2 (𝐺 ∈ GrpOp → (inv‘𝐺) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
191, 18eqtrid 2776 1 (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  ran crn 5624  cfv 6486  crio 7309  (class class class)co 7353  GrpOpcgr 30451  GIdcgi 30452  invcgn 30453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-ginv 30457
This theorem is referenced by:  grpoinvval  30485  grpoinvf  30494
  Copyright terms: Public domain W3C validator