Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpoinvfval | Structured version Visualization version GIF version |
Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 |
grpinvfval.2 | ⊢ 𝑈 = (GId‘𝐺) |
grpinvfval.3 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpoinvfval | ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfval.3 | . 2 ⊢ 𝑁 = (inv‘𝐺) | |
2 | grpinvfval.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
3 | rnexg 7725 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
4 | 2, 3 | eqeltrid 2843 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
5 | mptexg 7079 | . . . 4 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) |
7 | rneq 5834 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
8 | 7, 2 | eqtr4di 2797 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
9 | oveq 7261 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥)) | |
10 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺)) | |
11 | grpinvfval.2 | . . . . . . . 8 ⊢ 𝑈 = (GId‘𝐺) | |
12 | 10, 11 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (GId‘𝑔) = 𝑈) |
13 | 9, 12 | eqeq12d 2754 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = (GId‘𝑔) ↔ (𝑦𝐺𝑥) = 𝑈)) |
14 | 8, 13 | riotaeqbidv 7215 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
15 | 8, 14 | mpteq12dv 5161 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
16 | df-ginv 28758 | . . . 4 ⊢ inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)))) | |
17 | 15, 16 | fvmptg 6855 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) → (inv‘𝐺) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
18 | 6, 17 | mpdan 683 | . 2 ⊢ (𝐺 ∈ GrpOp → (inv‘𝐺) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
19 | 1, 18 | syl5eq 2791 | 1 ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ran crn 5581 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 GrpOpcgr 28752 GIdcgi 28753 invcgn 28754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-ginv 28758 |
This theorem is referenced by: grpoinvval 28786 grpoinvf 28795 |
Copyright terms: Public domain | W3C validator |