Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpoinvfval | Structured version Visualization version GIF version |
Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 |
grpinvfval.2 | ⊢ 𝑈 = (GId‘𝐺) |
grpinvfval.3 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpoinvfval | ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfval.3 | . 2 ⊢ 𝑁 = (inv‘𝐺) | |
2 | grpinvfval.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
3 | rnexg 7819 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
4 | 2, 3 | eqeltrid 2841 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
5 | mptexg 7153 | . . . 4 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) |
7 | rneq 5877 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
8 | 7, 2 | eqtr4di 2794 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
9 | oveq 7343 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥)) | |
10 | fveq2 6825 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺)) | |
11 | grpinvfval.2 | . . . . . . . 8 ⊢ 𝑈 = (GId‘𝐺) | |
12 | 10, 11 | eqtr4di 2794 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (GId‘𝑔) = 𝑈) |
13 | 9, 12 | eqeq12d 2752 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = (GId‘𝑔) ↔ (𝑦𝐺𝑥) = 𝑈)) |
14 | 8, 13 | riotaeqbidv 7296 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
15 | 8, 14 | mpteq12dv 5183 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
16 | df-ginv 29145 | . . . 4 ⊢ inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)))) | |
17 | 15, 16 | fvmptg 6929 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) → (inv‘𝐺) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
18 | 6, 17 | mpdan 684 | . 2 ⊢ (𝐺 ∈ GrpOp → (inv‘𝐺) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
19 | 1, 18 | eqtrid 2788 | 1 ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ↦ cmpt 5175 ran crn 5621 ‘cfv 6479 ℩crio 7292 (class class class)co 7337 GrpOpcgr 29139 GIdcgi 29140 invcgn 29141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-ginv 29145 |
This theorem is referenced by: grpoinvval 29173 grpoinvf 29182 |
Copyright terms: Public domain | W3C validator |