MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvfval Structured version   Visualization version   GIF version

Theorem grpoinvfval 30504
Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinvfval.1 𝑋 = ran 𝐺
grpinvfval.2 𝑈 = (GId‘𝐺)
grpinvfval.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvfval (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑈
Allowed substitution hints:   𝑈(𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem grpoinvfval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 grpinvfval.3 . 2 𝑁 = (inv‘𝐺)
2 grpinvfval.1 . . . . 5 𝑋 = ran 𝐺
3 rnexg 7838 . . . . 5 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
42, 3eqeltrid 2837 . . . 4 (𝐺 ∈ GrpOp → 𝑋 ∈ V)
5 mptexg 7161 . . . 4 (𝑋 ∈ V → (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V)
64, 5syl 17 . . 3 (𝐺 ∈ GrpOp → (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V)
7 rneq 5880 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
87, 2eqtr4di 2786 . . . . 5 (𝑔 = 𝐺 → ran 𝑔 = 𝑋)
9 oveq 7358 . . . . . . 7 (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥))
10 fveq2 6828 . . . . . . . 8 (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺))
11 grpinvfval.2 . . . . . . . 8 𝑈 = (GId‘𝐺)
1210, 11eqtr4di 2786 . . . . . . 7 (𝑔 = 𝐺 → (GId‘𝑔) = 𝑈)
139, 12eqeq12d 2749 . . . . . 6 (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = (GId‘𝑔) ↔ (𝑦𝐺𝑥) = 𝑈))
148, 13riotaeqbidv 7312 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)) = (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈))
158, 14mpteq12dv 5180 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔 ↦ (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
16 df-ginv 30477 . . . 4 inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))))
1715, 16fvmptg 6933 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) → (inv‘𝐺) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
186, 17mpdan 687 . 2 (𝐺 ∈ GrpOp → (inv‘𝐺) = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
191, 18eqtrid 2780 1 (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cmpt 5174  ran crn 5620  cfv 6486  crio 7308  (class class class)co 7352  GrpOpcgr 30471  GIdcgi 30472  invcgn 30473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-ginv 30477
This theorem is referenced by:  grpoinvval  30505  grpoinvf  30514
  Copyright terms: Public domain W3C validator