![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpoinvfval | Structured version Visualization version GIF version |
Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 |
grpinvfval.2 | ⊢ 𝑈 = (GId‘𝐺) |
grpinvfval.3 | ⊢ 𝑁 = (inv‘𝐺) |
Ref | Expression |
---|---|
grpoinvfval | ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfval.3 | . 2 ⊢ 𝑁 = (inv‘𝐺) | |
2 | grpinvfval.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
3 | rnexg 7376 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
4 | 2, 3 | syl5eqel 2862 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
5 | mptexg 6756 | . . . 4 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) |
7 | rneq 5596 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
8 | 7, 2 | syl6eqr 2831 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
9 | oveq 6928 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥)) | |
10 | fveq2 6446 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺)) | |
11 | grpinvfval.2 | . . . . . . . 8 ⊢ 𝑈 = (GId‘𝐺) | |
12 | 10, 11 | syl6eqr 2831 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (GId‘𝑔) = 𝑈) |
13 | 9, 12 | eqeq12d 2792 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = (GId‘𝑔) ↔ (𝑦𝐺𝑥) = 𝑈)) |
14 | 8, 13 | riotaeqbidv 6886 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
15 | 8, 14 | mpteq12dv 4969 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
16 | df-ginv 27922 | . . . 4 ⊢ inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)))) | |
17 | 15, 16 | fvmptg 6540 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) → (inv‘𝐺) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
18 | 6, 17 | mpdan 677 | . 2 ⊢ (𝐺 ∈ GrpOp → (inv‘𝐺) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
19 | 1, 18 | syl5eq 2825 | 1 ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ↦ cmpt 4965 ran crn 5356 ‘cfv 6135 ℩crio 6882 (class class class)co 6922 GrpOpcgr 27916 GIdcgi 27917 invcgn 27918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-ginv 27922 |
This theorem is referenced by: grpoinvval 27950 grpoinvf 27959 |
Copyright terms: Public domain | W3C validator |