| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpoinvfval | Structured version Visualization version GIF version | ||
| Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpinvfval.1 | ⊢ 𝑋 = ran 𝐺 |
| grpinvfval.2 | ⊢ 𝑈 = (GId‘𝐺) |
| grpinvfval.3 | ⊢ 𝑁 = (inv‘𝐺) |
| Ref | Expression |
|---|---|
| grpoinvfval | ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfval.3 | . 2 ⊢ 𝑁 = (inv‘𝐺) | |
| 2 | grpinvfval.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
| 3 | rnexg 7832 | . . . . 5 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
| 4 | 2, 3 | eqeltrid 2835 | . . . 4 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
| 5 | mptexg 7155 | . . . 4 ⊢ (𝑋 ∈ V → (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝐺 ∈ GrpOp → (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) |
| 7 | rneq 5876 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺) | |
| 8 | 7, 2 | eqtr4di 2784 | . . . . 5 ⊢ (𝑔 = 𝐺 → ran 𝑔 = 𝑋) |
| 9 | oveq 7352 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (𝑦𝑔𝑥) = (𝑦𝐺𝑥)) | |
| 10 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (GId‘𝑔) = (GId‘𝐺)) | |
| 11 | grpinvfval.2 | . . . . . . . 8 ⊢ 𝑈 = (GId‘𝐺) | |
| 12 | 10, 11 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (GId‘𝑔) = 𝑈) |
| 13 | 9, 12 | eqeq12d 2747 | . . . . . 6 ⊢ (𝑔 = 𝐺 → ((𝑦𝑔𝑥) = (GId‘𝑔) ↔ (𝑦𝐺𝑥) = 𝑈)) |
| 14 | 8, 13 | riotaeqbidv 7306 | . . . . 5 ⊢ (𝑔 = 𝐺 → (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) |
| 15 | 8, 14 | mpteq12dv 5178 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑥 ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔))) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| 16 | df-ginv 30470 | . . . 4 ⊢ inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑦 ∈ ran 𝑔(𝑦𝑔𝑥) = (GId‘𝑔)))) | |
| 17 | 15, 16 | fvmptg 6927 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈)) ∈ V) → (inv‘𝐺) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| 18 | 6, 17 | mpdan 687 | . 2 ⊢ (𝐺 ∈ GrpOp → (inv‘𝐺) = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| 19 | 1, 18 | eqtrid 2778 | 1 ⊢ (𝐺 ∈ GrpOp → 𝑁 = (𝑥 ∈ 𝑋 ↦ (℩𝑦 ∈ 𝑋 (𝑦𝐺𝑥) = 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5172 ran crn 5617 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 GrpOpcgr 30464 GIdcgi 30465 invcgn 30466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-ginv 30470 |
| This theorem is referenced by: grpoinvval 30498 grpoinvf 30507 |
| Copyright terms: Public domain | W3C validator |