Detailed syntax breakdown of Definition df-grlim
| Step | Hyp | Ref
| Expression |
| 1 | | cgrlim 47988 |
. 2
class
GraphLocIso |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | vh |
. . 3
setvar ℎ |
| 4 | | cvv 3459 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . . . . 7
class 𝑔 |
| 6 | | cvtx 28975 |
. . . . . . 7
class
Vtx |
| 7 | 5, 6 | cfv 6531 |
. . . . . 6
class
(Vtx‘𝑔) |
| 8 | 3 | cv 1539 |
. . . . . . 7
class ℎ |
| 9 | 8, 6 | cfv 6531 |
. . . . . 6
class
(Vtx‘ℎ) |
| 10 | | vf |
. . . . . . 7
setvar 𝑓 |
| 11 | 10 | cv 1539 |
. . . . . 6
class 𝑓 |
| 12 | 7, 9, 11 | wf1o 6530 |
. . . . 5
wff 𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) |
| 13 | | vv |
. . . . . . . . . 10
setvar 𝑣 |
| 14 | 13 | cv 1539 |
. . . . . . . . 9
class 𝑣 |
| 15 | | cclnbgr 47832 |
. . . . . . . . 9
class
ClNeighbVtx |
| 16 | 5, 14, 15 | co 7405 |
. . . . . . . 8
class (𝑔 ClNeighbVtx 𝑣) |
| 17 | | cisubgr 47873 |
. . . . . . . 8
class
ISubGr |
| 18 | 5, 16, 17 | co 7405 |
. . . . . . 7
class (𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) |
| 19 | 14, 11 | cfv 6531 |
. . . . . . . . 9
class (𝑓‘𝑣) |
| 20 | 8, 19, 15 | co 7405 |
. . . . . . . 8
class (ℎ ClNeighbVtx (𝑓‘𝑣)) |
| 21 | 8, 20, 17 | co 7405 |
. . . . . . 7
class (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))) |
| 22 | | cgric 47889 |
. . . . . . 7
class
≃𝑔𝑟 |
| 23 | 18, 21, 22 | wbr 5119 |
. . . . . 6
wff (𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))) |
| 24 | 23, 13, 7 | wral 3051 |
. . . . 5
wff
∀𝑣 ∈
(Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))) |
| 25 | 12, 24 | wa 395 |
. . . 4
wff (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣)))) |
| 26 | 25, 10 | cab 2713 |
. . 3
class {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} |
| 27 | 2, 3, 4, 4, 26 | cmpo 7407 |
. 2
class (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) |
| 28 | 1, 27 | wceq 1540 |
1
wff
GraphLocIso = (𝑔 ∈ V,
ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) |