Detailed syntax breakdown of Definition df-grlim
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cgrlim 47943 | . 2
class 
GraphLocIso | 
| 2 |  | vg | . . 3
setvar 𝑔 | 
| 3 |  | vh | . . 3
setvar ℎ | 
| 4 |  | cvv 3480 | . . 3
class
V | 
| 5 | 2 | cv 1539 | . . . . . . 7
class 𝑔 | 
| 6 |  | cvtx 29013 | . . . . . . 7
class
Vtx | 
| 7 | 5, 6 | cfv 6561 | . . . . . 6
class
(Vtx‘𝑔) | 
| 8 | 3 | cv 1539 | . . . . . . 7
class ℎ | 
| 9 | 8, 6 | cfv 6561 | . . . . . 6
class
(Vtx‘ℎ) | 
| 10 |  | vf | . . . . . . 7
setvar 𝑓 | 
| 11 | 10 | cv 1539 | . . . . . 6
class 𝑓 | 
| 12 | 7, 9, 11 | wf1o 6560 | . . . . 5
wff 𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) | 
| 13 |  | vv | . . . . . . . . . 10
setvar 𝑣 | 
| 14 | 13 | cv 1539 | . . . . . . . . 9
class 𝑣 | 
| 15 |  | cclnbgr 47805 | . . . . . . . . 9
class 
ClNeighbVtx | 
| 16 | 5, 14, 15 | co 7431 | . . . . . . . 8
class (𝑔 ClNeighbVtx 𝑣) | 
| 17 |  | cisubgr 47846 | . . . . . . . 8
class 
ISubGr | 
| 18 | 5, 16, 17 | co 7431 | . . . . . . 7
class (𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) | 
| 19 | 14, 11 | cfv 6561 | . . . . . . . . 9
class (𝑓‘𝑣) | 
| 20 | 8, 19, 15 | co 7431 | . . . . . . . 8
class (ℎ ClNeighbVtx (𝑓‘𝑣)) | 
| 21 | 8, 20, 17 | co 7431 | . . . . . . 7
class (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))) | 
| 22 |  | cgric 47862 | . . . . . . 7
class 
≃𝑔𝑟 | 
| 23 | 18, 21, 22 | wbr 5143 | . . . . . 6
wff (𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))) | 
| 24 | 23, 13, 7 | wral 3061 | . . . . 5
wff
∀𝑣 ∈
(Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))) | 
| 25 | 12, 24 | wa 395 | . . . 4
wff (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣)))) | 
| 26 | 25, 10 | cab 2714 | . . 3
class {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} | 
| 27 | 2, 3, 4, 4, 26 | cmpo 7433 | . 2
class (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) | 
| 28 | 1, 27 | wceq 1540 | 1
wff 
GraphLocIso = (𝑔 ∈ V,
ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) |