Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-grlim Structured version   Visualization version   GIF version

Definition df-grlim 47802
Description: A local isomorphism of graphs is a bijection between the sets of vertices of two graphs that preserves local adjacency, i.e. the subgraph induced by the closed neighborhood of a vertex of the first graph and the subgraph induced by the closed neighborhood of the associated vertex of the second graph are isomorphic. See the following chat in mathoverflow: https://mathoverflow.net/questions/491133/locally-isomorphic-graphs. (Contributed by AV, 27-Apr-2025.)
Assertion
Ref Expression
df-grlim GraphLocIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))})
Distinct variable group:   𝑓,𝑔,,𝑣

Detailed syntax breakdown of Definition df-grlim
StepHypRef Expression
1 cgrlim 47800 . 2 class GraphLocIso
2 vg . . 3 setvar 𝑔
3 vh . . 3 setvar
4 cvv 3488 . . 3 class V
52cv 1536 . . . . . . 7 class 𝑔
6 cvtx 29031 . . . . . . 7 class Vtx
75, 6cfv 6573 . . . . . 6 class (Vtx‘𝑔)
83cv 1536 . . . . . . 7 class
98, 6cfv 6573 . . . . . 6 class (Vtx‘)
10 vf . . . . . . 7 setvar 𝑓
1110cv 1536 . . . . . 6 class 𝑓
127, 9, 11wf1o 6572 . . . . 5 wff 𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘)
13 vv . . . . . . . . . 10 setvar 𝑣
1413cv 1536 . . . . . . . . 9 class 𝑣
15 cclnbgr 47692 . . . . . . . . 9 class ClNeighbVtx
165, 14, 15co 7448 . . . . . . . 8 class (𝑔 ClNeighbVtx 𝑣)
17 cisubgr 47732 . . . . . . . 8 class ISubGr
185, 16, 17co 7448 . . . . . . 7 class (𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣))
1914, 11cfv 6573 . . . . . . . . 9 class (𝑓𝑣)
208, 19, 15co 7448 . . . . . . . 8 class ( ClNeighbVtx (𝑓𝑣))
218, 20, 17co 7448 . . . . . . 7 class ( ISubGr ( ClNeighbVtx (𝑓𝑣)))
22 cgric 47746 . . . . . . 7 class 𝑔𝑟
2318, 21, 22wbr 5166 . . . . . 6 wff (𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣)))
2423, 13, 7wral 3067 . . . . 5 wff 𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣)))
2512, 24wa 395 . . . 4 wff (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))
2625, 10cab 2717 . . 3 class {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))}
272, 3, 4, 4, 26cmpo 7450 . 2 class (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))})
281, 27wceq 1537 1 wff GraphLocIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))})
Colors of variables: wff setvar class
This definition is referenced by:  grlimfn  47803  grlimdmrel  47804  isgrlim  47806
  Copyright terms: Public domain W3C validator