Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimfn Structured version   Visualization version   GIF version

Theorem grlimfn 48009
Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025.)
Assertion
Ref Expression
grlimfn GraphLocIso Fn (V × V)

Proof of Theorem grlimfn
Dummy variables 𝑓 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grlim 48008 . 2 GraphLocIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))})
2 fvex 6835 . . 3 (Vtx‘) ∈ V
3 f1of 6763 . . . . 5 (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘))
43ad2antrl 728 . . . 4 (((Vtx‘) ∈ V ∧ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘))
5 fvexd 6837 . . . 4 ((Vtx‘) ∈ V → (Vtx‘𝑔) ∈ V)
6 id 22 . . . 4 ((Vtx‘) ∈ V → (Vtx‘) ∈ V)
74, 5, 6fabexd 7867 . . 3 ((Vtx‘) ∈ V → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))} ∈ V)
82, 7ax-mp 5 . 2 {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))} ∈ V
91, 8fnmpoi 8002 1 GraphLocIso Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2111  {cab 2709  wral 3047  Vcvv 3436   class class class wbr 5091   × cxp 5614   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Vtxcvtx 28972   ClNeighbVtx cclnbgr 47848   ISubGr cisubgr 47890  𝑔𝑟 cgric 47906   GraphLocIso cgrlim 48006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-f1o 6488  df-fv 6489  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-grlim 48008
This theorem is referenced by:  brgrlic  48034  grlicrel  48036
  Copyright terms: Public domain W3C validator