| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grlimfn | Structured version Visualization version GIF version | ||
| Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025.) |
| Ref | Expression |
|---|---|
| grlimfn | ⊢ GraphLocIso Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grlim 48008 | . 2 ⊢ GraphLocIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) | |
| 2 | fvex 6835 | . . 3 ⊢ (Vtx‘ℎ) ∈ V | |
| 3 | f1of 6763 | . . . . 5 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) | |
| 4 | 3 | ad2antrl 728 | . . . 4 ⊢ (((Vtx‘ℎ) ∈ V ∧ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) |
| 5 | fvexd 6837 | . . . 4 ⊢ ((Vtx‘ℎ) ∈ V → (Vtx‘𝑔) ∈ V) | |
| 6 | id 22 | . . . 4 ⊢ ((Vtx‘ℎ) ∈ V → (Vtx‘ℎ) ∈ V) | |
| 7 | 4, 5, 6 | fabexd 7867 | . . 3 ⊢ ((Vtx‘ℎ) ∈ V → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} ∈ V) |
| 8 | 2, 7 | ax-mp 5 | . 2 ⊢ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} ∈ V |
| 9 | 1, 8 | fnmpoi 8002 | 1 ⊢ GraphLocIso Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 {cab 2709 ∀wral 3047 Vcvv 3436 class class class wbr 5091 × cxp 5614 Fn wfn 6476 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Vtxcvtx 28972 ClNeighbVtx cclnbgr 47848 ISubGr cisubgr 47890 ≃𝑔𝑟 cgric 47906 GraphLocIso cgrlim 48006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-f1o 6488 df-fv 6489 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-grlim 48008 |
| This theorem is referenced by: brgrlic 48034 grlicrel 48036 |
| Copyright terms: Public domain | W3C validator |