| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grlimfn | Structured version Visualization version GIF version | ||
| Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025.) |
| Ref | Expression |
|---|---|
| grlimfn | ⊢ GraphLocIso Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grlim 47990 | . 2 ⊢ GraphLocIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) | |
| 2 | fvex 6889 | . . 3 ⊢ (Vtx‘ℎ) ∈ V | |
| 3 | f1of 6818 | . . . . 5 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) | |
| 4 | 3 | ad2antrl 728 | . . . 4 ⊢ (((Vtx‘ℎ) ∈ V ∧ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) |
| 5 | fvexd 6891 | . . . 4 ⊢ ((Vtx‘ℎ) ∈ V → (Vtx‘𝑔) ∈ V) | |
| 6 | id 22 | . . . 4 ⊢ ((Vtx‘ℎ) ∈ V → (Vtx‘ℎ) ∈ V) | |
| 7 | 4, 5, 6 | fabexd 7933 | . . 3 ⊢ ((Vtx‘ℎ) ∈ V → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} ∈ V) |
| 8 | 2, 7 | ax-mp 5 | . 2 ⊢ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} ∈ V |
| 9 | 1, 8 | fnmpoi 8069 | 1 ⊢ GraphLocIso Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2108 {cab 2713 ∀wral 3051 Vcvv 3459 class class class wbr 5119 × cxp 5652 Fn wfn 6526 ⟶wf 6527 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 Vtxcvtx 28975 ClNeighbVtx cclnbgr 47832 ISubGr cisubgr 47873 ≃𝑔𝑟 cgric 47889 GraphLocIso cgrlim 47988 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-f1o 6538 df-fv 6539 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-grlim 47990 |
| This theorem is referenced by: brgrlic 48009 grlicrel 48011 |
| Copyright terms: Public domain | W3C validator |