![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grlimfn | Structured version Visualization version GIF version |
Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025.) |
Ref | Expression |
---|---|
grlimfn | ⊢ GraphLocIso Fn (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-grlim 47802 | . 2 ⊢ GraphLocIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) | |
2 | fvex 6933 | . . 3 ⊢ (Vtx‘ℎ) ∈ V | |
3 | f1of 6862 | . . . . 5 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) | |
4 | 3 | ad2antrl 727 | . . . 4 ⊢ (((Vtx‘ℎ) ∈ V ∧ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) |
5 | fvexd 6935 | . . . 4 ⊢ ((Vtx‘ℎ) ∈ V → (Vtx‘𝑔) ∈ V) | |
6 | id 22 | . . . 4 ⊢ ((Vtx‘ℎ) ∈ V → (Vtx‘ℎ) ∈ V) | |
7 | 4, 5, 6 | fabexd 7975 | . . 3 ⊢ ((Vtx‘ℎ) ∈ V → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} ∈ V) |
8 | 2, 7 | ax-mp 5 | . 2 ⊢ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} ∈ V |
9 | 1, 8 | fnmpoi 8111 | 1 ⊢ GraphLocIso Fn (V × V) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 {cab 2717 ∀wral 3067 Vcvv 3488 class class class wbr 5166 × cxp 5698 Fn wfn 6568 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 Vtxcvtx 29031 ClNeighbVtx cclnbgr 47692 ISubGr cisubgr 47732 ≃𝑔𝑟 cgric 47746 GraphLocIso cgrlim 47800 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-f1o 6580 df-fv 6581 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-grlim 47802 |
This theorem is referenced by: brgrlic 47821 grlicrel 47823 |
Copyright terms: Public domain | W3C validator |