| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grlimfn | Structured version Visualization version GIF version | ||
| Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025.) |
| Ref | Expression |
|---|---|
| grlimfn | ⊢ GraphLocIso Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grlim 47977 | . 2 ⊢ GraphLocIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) | |
| 2 | fvex 6871 | . . 3 ⊢ (Vtx‘ℎ) ∈ V | |
| 3 | f1of 6800 | . . . . 5 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) | |
| 4 | 3 | ad2antrl 728 | . . . 4 ⊢ (((Vtx‘ℎ) ∈ V ∧ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) |
| 5 | fvexd 6873 | . . . 4 ⊢ ((Vtx‘ℎ) ∈ V → (Vtx‘𝑔) ∈ V) | |
| 6 | id 22 | . . . 4 ⊢ ((Vtx‘ℎ) ∈ V → (Vtx‘ℎ) ∈ V) | |
| 7 | 4, 5, 6 | fabexd 7913 | . . 3 ⊢ ((Vtx‘ℎ) ∈ V → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} ∈ V) |
| 8 | 2, 7 | ax-mp 5 | . 2 ⊢ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} ∈ V |
| 9 | 1, 8 | fnmpoi 8049 | 1 ⊢ GraphLocIso Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 {cab 2707 ∀wral 3044 Vcvv 3447 class class class wbr 5107 × cxp 5636 Fn wfn 6506 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Vtxcvtx 28923 ClNeighbVtx cclnbgr 47819 ISubGr cisubgr 47860 ≃𝑔𝑟 cgric 47876 GraphLocIso cgrlim 47975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-f1o 6518 df-fv 6519 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-grlim 47977 |
| This theorem is referenced by: brgrlic 47996 grlicrel 47998 |
| Copyright terms: Public domain | W3C validator |