Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlimfn Structured version   Visualization version   GIF version

Theorem grlimfn 47964
Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025.)
Assertion
Ref Expression
grlimfn GraphLocIso Fn (V × V)

Proof of Theorem grlimfn
Dummy variables 𝑓 𝑔 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-grlim 47963 . 2 GraphLocIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))})
2 fvex 6839 . . 3 (Vtx‘) ∈ V
3 f1of 6768 . . . . 5 (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘))
43ad2antrl 728 . . . 4 (((Vtx‘) ∈ V ∧ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘))
5 fvexd 6841 . . . 4 ((Vtx‘) ∈ V → (Vtx‘𝑔) ∈ V)
6 id 22 . . . 4 ((Vtx‘) ∈ V → (Vtx‘) ∈ V)
74, 5, 6fabexd 7877 . . 3 ((Vtx‘) ∈ V → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))} ∈ V)
82, 7ax-mp 5 . 2 {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))} ∈ V
91, 8fnmpoi 8012 1 GraphLocIso Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  {cab 2707  wral 3044  Vcvv 3438   class class class wbr 5095   × cxp 5621   Fn wfn 6481  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Vtxcvtx 28959   ClNeighbVtx cclnbgr 47803   ISubGr cisubgr 47845  𝑔𝑟 cgric 47861   GraphLocIso cgrlim 47961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-f1o 6493  df-fv 6494  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-grlim 47963
This theorem is referenced by:  brgrlic  47989  grlicrel  47991
  Copyright terms: Public domain W3C validator