| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grlimfn | Structured version Visualization version GIF version | ||
| Description: The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025.) |
| Ref | Expression |
|---|---|
| grlimfn | ⊢ GraphLocIso Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-grlim 48102 | . 2 ⊢ GraphLocIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) | |
| 2 | fvex 6841 | . . 3 ⊢ (Vtx‘ℎ) ∈ V | |
| 3 | f1of 6768 | . . . . 5 ⊢ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) | |
| 4 | 3 | ad2antrl 728 | . . . 4 ⊢ (((Vtx‘ℎ) ∈ V ∧ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))) → 𝑓:(Vtx‘𝑔)⟶(Vtx‘ℎ)) |
| 5 | fvexd 6843 | . . . 4 ⊢ ((Vtx‘ℎ) ∈ V → (Vtx‘𝑔) ∈ V) | |
| 6 | id 22 | . . . 4 ⊢ ((Vtx‘ℎ) ∈ V → (Vtx‘ℎ) ∈ V) | |
| 7 | 4, 5, 6 | fabexd 7873 | . . 3 ⊢ ((Vtx‘ℎ) ∈ V → {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} ∈ V) |
| 8 | 2, 7 | ax-mp 5 | . 2 ⊢ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))} ∈ V |
| 9 | 1, 8 | fnmpoi 8008 | 1 ⊢ GraphLocIso Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2113 {cab 2711 ∀wral 3048 Vcvv 3437 class class class wbr 5093 × cxp 5617 Fn wfn 6481 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 Vtxcvtx 28976 ClNeighbVtx cclnbgr 47942 ISubGr cisubgr 47984 ≃𝑔𝑟 cgric 48000 GraphLocIso cgrlim 48100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-f1o 6493 df-fv 6494 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-grlim 48102 |
| This theorem is referenced by: brgrlic 48128 grlicrel 48130 |
| Copyright terms: Public domain | W3C validator |