| Metamath
Proof Explorer Theorem List (p. 480 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | grtriprop 47901* | The properties of a triangle. (Contributed by AV, 25-Jul-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑇 ∈ (GrTriangles‘𝐺) → ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | ||
| Theorem | grtrif1o 47902 | Any bijection onto a triangle preserves the edges of the triangle. (Contributed by AV, 25-Jul-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑇 ∈ (GrTriangles‘𝐺) ∧ 𝐹:(0..^3)–1-1-onto→𝑇) → ({(𝐹‘0), (𝐹‘1)} ∈ 𝐸 ∧ {(𝐹‘0), (𝐹‘2)} ∈ 𝐸 ∧ {(𝐹‘1), (𝐹‘2)} ∈ 𝐸)) | ||
| Theorem | isgrtri 47903* | A triangle in a graph. (Contributed by AV, 20-Jul-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑇 ∈ (GrTriangles‘𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 ∃𝑧 ∈ 𝑉 (𝑇 = {𝑥, 𝑦, 𝑧} ∧ (♯‘𝑇) = 3 ∧ ({𝑥, 𝑦} ∈ 𝐸 ∧ {𝑥, 𝑧} ∈ 𝐸 ∧ {𝑦, 𝑧} ∈ 𝐸))) | ||
| Theorem | grtrissvtx 47904 | A triangle is a subset of the vertices (of a graph). (Contributed by AV, 26-Jul-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑇 ∈ (GrTriangles‘𝐺) → 𝑇 ⊆ 𝑉) | ||
| Theorem | grtriclwlk3 47905 | A triangle induces a closed walk of length 3 . (Contributed by AV, 26-Jul-2025.) |
| ⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) & ⊢ (𝜑 → 𝑃:(0..^3)–1-1-onto→𝑇) ⇒ ⊢ (𝜑 → 𝑃 ∈ (3 ClWWalksN 𝐺)) | ||
| Theorem | cycl3grtrilem 47906 | Lemma for cycl3grtri 47907. (Contributed by AV, 5-Oct-2025.) |
| ⊢ (((𝐺 ∈ UPGraph ∧ 𝐹(Paths‘𝐺)𝑃) ∧ ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ∧ (♯‘𝐹) = 3)) → ({(𝑃‘0), (𝑃‘1)} ∈ (Edg‘𝐺) ∧ {(𝑃‘0), (𝑃‘2)} ∈ (Edg‘𝐺) ∧ {(𝑃‘1), (𝑃‘2)} ∈ (Edg‘𝐺))) | ||
| Theorem | cycl3grtri 47907 | The vertices of a cycle of size 3 are a triangle in a graph. (Contributed by AV, 5-Oct-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ UPGraph) & ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) & ⊢ (𝜑 → (♯‘𝐹) = 3) ⇒ ⊢ (𝜑 → ran 𝑃 ∈ (GrTriangles‘𝐺)) | ||
| Theorem | grtrimap 47908 | Conditions for mapping triangles onto triangles. Lemma for grimgrtri 47909 and grlimgrtri 47956. (Contributed by AV, 23-Aug-2025.) |
| ⊢ (𝐹:𝑉–1-1→𝑊 → (((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ (𝑇 = {𝑎, 𝑏, 𝑐} ∧ (♯‘𝑇) = 3)) → (((𝐹‘𝑎) ∈ 𝑊 ∧ (𝐹‘𝑏) ∈ 𝑊 ∧ (𝐹‘𝑐) ∈ 𝑊) ∧ (𝐹 “ 𝑇) = {(𝐹‘𝑎), (𝐹‘𝑏), (𝐹‘𝑐)} ∧ (♯‘(𝐹 “ 𝑇)) = 3))) | ||
| Theorem | grimgrtri 47909 | Graph isomorphisms map triangles onto triangles. (Contributed by AV, 27-Jul-2025.) (Proof shortened by AV, 24-Aug-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ UHGraph) & ⊢ (𝜑 → 𝐻 ∈ UHGraph) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GraphIso 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) ⇒ ⊢ (𝜑 → (𝐹 “ 𝑇) ∈ (GrTriangles‘𝐻)) | ||
| Theorem | usgrgrtrirex 47910* | Conditions for a simple graph to contain a triangle. (Contributed by AV, 7-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 NeighbVtx 𝑎) ⇒ ⊢ (𝐺 ∈ USGraph → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑁 ∃𝑐 ∈ 𝑁 (𝑏 ≠ 𝑐 ∧ {𝑏, 𝑐} ∈ 𝐸))) | ||
According to Wikipedia "Star (graph theory)", 10-Sep-2025, https://en.wikipedia.org/wiki/Star_(graph_theory): "In graph theory, the star Sk is the complete bipartite graph K(1,k), that is, it is a tree with one internal node and k leaves. Alternatively, some authors define Sk to be the tree of order k with maximum diameter 2, in which case a star of k > 2 has k - 1 leaves.". | ||
| Syntax | cstgr 47911 | Extend class notation with star graphs. |
| class StarGr | ||
| Definition | df-stgr 47912* | Definition of star graphs according to the first definition in Wikipedia, so that (StarGr‘𝑁) has size 𝑁, and order 𝑁 + 1: (StarGr‘0) will be a single vertex (graph without edges), see stgr0 47920, (StarGr‘1) will be a single edge (graph with two vertices connected by an edge), see stgr1 47921, and (StarGr‘3) will be a 3-star or "claw" (a star with 3 edges). (Contributed by AV, 10-Sep-2025.) |
| ⊢ StarGr = (𝑛 ∈ ℕ0 ↦ {〈(Base‘ndx), (0...𝑛)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})〉}) | ||
| Theorem | stgrfv 47913* | The star graph SN. (Contributed by AV, 10-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (StarGr‘𝑁) = {〈(Base‘ndx), (0...𝑁)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})〉}) | ||
| Theorem | stgrvtx 47914 | The vertices of the star graph SN. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (Vtx‘(StarGr‘𝑁)) = (0...𝑁)) | ||
| Theorem | stgriedg 47915* | The indexed edges of the star graph SN. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (iEdg‘(StarGr‘𝑁)) = ( I ↾ {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}})) | ||
| Theorem | stgredg 47916* | The edges of the star graph SN. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = {𝑒 ∈ 𝒫 (0...𝑁) ∣ ∃𝑥 ∈ (1...𝑁)𝑒 = {0, 𝑥}}) | ||
| Theorem | stgredgel 47917* | An edge of the star graph SN. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝐸 ∈ (Edg‘(StarGr‘𝑁)) ↔ (𝐸 ⊆ (0...𝑁) ∧ ∃𝑥 ∈ (1...𝑁)𝐸 = {0, 𝑥}))) | ||
| Theorem | stgredgiun 47918* | The edges of the star graph SN as indexed union. (Contributed by AV, 29-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (Edg‘(StarGr‘𝑁)) = ∪ 𝑥 ∈ (1...𝑁){{0, 𝑥}}) | ||
| Theorem | stgrusgra 47919 | The star graph SN is a simple graph. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (𝑁 ∈ ℕ0 → (StarGr‘𝑁) ∈ USGraph) | ||
| Theorem | stgr0 47920 | The star graph S0 consists of a single vertex without edges. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (StarGr‘0) = {〈(Base‘ndx), {0}〉, 〈(.ef‘ndx), ∅〉} | ||
| Theorem | stgr1 47921 | The star graph S1 consists of a single simple edge. (Contributed by AV, 11-Sep-2025.) |
| ⊢ (StarGr‘1) = {〈(Base‘ndx), {0, 1}〉, 〈(.ef‘ndx), ( I ↾ {{0, 1}})〉} | ||
| Theorem | stgrvtx0 47922 | The center ("internal node") of a star graph SN. (Contributed by AV, 12-Sep-2025.) |
| ⊢ 𝐺 = (StarGr‘𝑁) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ0 → 0 ∈ 𝑉) | ||
| Theorem | stgrorder 47923 | The order of a star graph SN. (Contributed by AV, 12-Sep-2025.) |
| ⊢ 𝐺 = (StarGr‘𝑁) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ0 → (♯‘𝑉) = (𝑁 + 1)) | ||
| Theorem | stgrnbgr0 47924 | All vertices of a star graph SN except the center are in the (open) neighborhood of the center. (Contributed by AV, 12-Sep-2025.) |
| ⊢ 𝐺 = (StarGr‘𝑁) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐺 NeighbVtx 0) = (𝑉 ∖ {0})) | ||
| Theorem | stgrclnbgr0 47925 | All vertices of a star graph SN are in the closed neighborhood of the center. (Contributed by AV, 12-Sep-2025.) |
| ⊢ 𝐺 = (StarGr‘𝑁) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝐺 ClNeighbVtx 0) = 𝑉) | ||
| Theorem | isubgr3stgrlem1 47926 | Lemma 1 for isubgr3stgr 47935. (Contributed by AV, 16-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝐹 = (𝐻 ∪ {〈𝑋, 𝑌〉}) ⇒ ⊢ ((𝐻:𝑈–1-1-onto→𝑅 ∧ 𝑋 ∈ 𝑉 ∧ (𝑌 ∈ 𝑊 ∧ 𝑌 ∉ 𝑅)) → 𝐹:𝐶–1-1-onto→(𝑅 ∪ {𝑌})) | ||
| Theorem | isubgr3stgrlem2 47927* | Lemma 2 for isubgr3stgr 47935. (Contributed by AV, 16-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑓 𝑓:𝑈–1-1-onto→(𝑊 ∖ {0})) | ||
| Theorem | isubgr3stgrlem3 47928* | Lemma 3 for isubgr3stgr 47935. (Contributed by AV, 17-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉 ∧ (♯‘𝑈) = 𝑁) → ∃𝑔(𝑔:𝐶–1-1-onto→𝑊 ∧ (𝑔‘𝑋) = 0)) | ||
| Theorem | isubgr3stgrlem4 47929* | Lemma 4 for isubgr3stgr 47935. (Contributed by AV, 24-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐴 = 𝑋 ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶)) → ∃𝑧 ∈ (1...𝑁)(𝐹 “ {𝐴, 𝐵}) = {0, 𝑧}) | ||
| Theorem | isubgr3stgrlem5 47930* | Lemma 5 for isubgr3stgr 47935. (Contributed by AV, 24-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((𝐹:𝐶⟶𝑊 ∧ 𝑌 ∈ 𝐼) → (𝐻‘𝑌) = (𝐹 “ 𝑌)) | ||
| Theorem | isubgr3stgrlem6 47931* | Lemma 6 for isubgr3stgr 47935. (Contributed by AV, 24-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼⟶(Edg‘(StarGr‘𝑁))) | ||
| Theorem | isubgr3stgrlem7 47932* | Lemma 7 for isubgr3stgr 47935. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0) ∧ 𝐽 ∈ (Edg‘(StarGr‘𝑁))) → (◡𝐹 “ 𝐽) ∈ 𝐼) | ||
| Theorem | isubgr3stgrlem8 47933* | Lemma 8 for isubgr3stgr 47935. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → 𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁))) | ||
| Theorem | isubgr3stgrlem9 47934* | Lemma 9 for isubgr3stgr 47935. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐼 = (Edg‘(𝐺 ISubGr 𝐶)) & ⊢ 𝐻 = (𝑖 ∈ 𝐼 ↦ (𝐹 “ 𝑖)) ⇒ ⊢ ((((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) ∧ ((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) ∧ (𝐹:𝐶–1-1-onto→𝑊 ∧ (𝐹‘𝑋) = 0)) → (𝐻:𝐼–1-1-onto→(Edg‘(StarGr‘𝑁)) ∧ ∀𝑒 ∈ 𝐼 (𝐹 “ 𝑒) = (𝐻‘𝑒))) | ||
| Theorem | isubgr3stgr 47935* | If a vertex of a simple graph has exactly 𝑁 (different) neighbors, and none of these neighbors are connected by an edge, then the (closed) neighborhood of this vertex induces a subgraph which is isomorphic to an 𝑁-star. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) & ⊢ 𝐶 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑆 = (StarGr‘𝑁) & ⊢ 𝑊 = (Vtx‘𝑆) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑋 ∈ 𝑉) → (((♯‘𝑈) = 𝑁 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸) → (𝐺 ISubGr 𝐶) ≃𝑔𝑟 (StarGr‘𝑁))) | ||
This section is about local isomorphisms of graphs, which are a generalization of isomorphisms of graphs, i.e., every isomorphism between two graphs is also a local isomorphism between these graphs, see uhgrimgrlim 47947. This definition is according to a chat in mathoverflow (https://mathoverflow.net/questions/491133/locally-isomorphic-graphs 47947): roughly speaking, it restricts the correspondence of two graphs to their neighborhoods. Additionally, a binary relation ≃𝑙𝑔𝑟 is defined (see df-grlic 47941) which is true for two graphs iff there is a local isomorphism between these graphs. Then these graphs are called "locally isomorphic". Therefore, this relation is also called "is locally isomorphic to" relation. As a main result of this section, it is shown that the "is locally isomorphic to" relation is an equivalence relation (for hypergraphs), see grlicer 47969. The names and symbols are chosen analogously to group isomorphisms GrpIso (see df-gim 19240) and graph isomorphisms GraphIso (see df-grim 47839) resp. isomorphism between groups ≃𝑔 (see df-gic 19241) and isomorphism between graphs ≃𝑔𝑟 (see df-gric 47842). In the future, it should be shown that there are local isomorphisms between two graphs which are not (ordinary) isomorphisms between these graphs, as discussed in the above mentioned chat in mathoverflow. | ||
| Syntax | cgrlim 47936 | The class of graph local isomorphism sets. |
| class GraphLocIso | ||
| Syntax | cgrlic 47937 | The class of the graph local isomorphism relation. |
| class ≃𝑙𝑔𝑟 | ||
| Definition | df-grlim 47938* | A local isomorphism of graphs is a bijection between the sets of vertices of two graphs that preserves local adjacency, i.e. the subgraph induced by the closed neighborhood of a vertex of the first graph and the subgraph induced by the closed neighborhood of the associated vertex of the second graph are isomorphic. See the following chat in mathoverflow: https://mathoverflow.net/questions/491133/locally-isomorphic-graphs. (Contributed by AV, 27-Apr-2025.) |
| ⊢ GraphLocIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) | ||
| Theorem | grlimfn 47939 | The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025.) |
| ⊢ GraphLocIso Fn (V × V) | ||
| Theorem | grlimdmrel 47940 | The domain of the graph local isomorphism function is a relation. (Contributed by AV, 20-May-2025.) |
| ⊢ Rel dom GraphLocIso | ||
| Definition | df-grlic 47941 | Two graphs are said to be locally isomorphic iff they are connected by at least one local isomorphism. (Contributed by AV, 27-Apr-2025.) |
| ⊢ ≃𝑙𝑔𝑟 = (◡ GraphLocIso “ (V ∖ 1o)) | ||
| Theorem | isgrlim 47942* | A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. (Contributed by AV, 20-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))))) | ||
| Theorem | isgrlim2 47943* | A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
| Theorem | grlimprop 47944* | Properties of a local isomorphism of graphs. (Contributed by AV, 21-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))))) | ||
| Theorem | grlimf1o 47945 | A local isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 21-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉–1-1-onto→𝑊) | ||
| Theorem | grlimprop2 47946* | Properties of a local isomorphism of graphs. (Contributed by AV, 29-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | ||
| Theorem | uhgrimgrlim 47947 | An isomorphism of hypergraphs is a local isomorphism between the two graphs. (Contributed by AV, 2-Jun-2025.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) | ||
| Theorem | uspgrlimlem1 47948* | Lemma 1 for uspgrlim 47952. (Contributed by AV, 16-Aug-2025.) |
| ⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑋) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (𝐻 ∈ USPGraph → 𝐿 = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) | ||
| Theorem | uspgrlimlem2 47949* | Lemma 2 for uspgrlim 47952. (Contributed by AV, 16-Aug-2025.) |
| ⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑋) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (𝐻 ∈ USPGraph → (◡(iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) | ||
| Theorem | uspgrlimlem3 47950* | Lemma 3 for uspgrlim 47952. (Contributed by AV, 16-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) → (𝑒 ∈ 𝐾 → (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒))) | ||
| Theorem | uspgrlimlem4 47951* | Lemma 4 for uspgrlim 47952. (Contributed by AV, 16-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))) | ||
| Theorem | uspgrlim 47952* | A local isomorphism of simple pseudographs is a bijection between their vertices that preserves neighborhoods, expressed by properties of their edges (not edge functions as in isgrlim2 47943). (Contributed by AV, 15-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)))))) | ||
| Theorem | usgrlimprop 47953* | Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) | ||
| Theorem | grlimgrtrilem1 47954* | Lemma 3 for grlimgrtri 47956. (Contributed by AV, 24-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑎) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾)) | ||
| Theorem | grlimgrtrilem2 47955* | Lemma 3 for grlimgrtri 47956. (Contributed by AV, 23-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑎) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑎)) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿) ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ 𝑖) = (𝑔‘𝑖) ∧ {𝑏, 𝑐} ∈ 𝐾) → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ 𝐽) | ||
| Theorem | grlimgrtri 47956* | Local isomorphisms between simple pseudographs map triangles onto triangles. (Contributed by AV, 24-Aug-2025.) |
| ⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) ⇒ ⊢ (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻)) | ||
| Theorem | brgrlic 47957 | The relation "is locally isomorphic to" for graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 ↔ (𝑅 GraphLocIso 𝑆) ≠ ∅) | ||
| Theorem | brgrilci 47958 | Prove that two graphs are locally isomorphic by an explicit local isomorphism. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐹 ∈ (𝑅 GraphLocIso 𝑆) → 𝑅 ≃𝑙𝑔𝑟 𝑆) | ||
| Theorem | grlicrel 47959 | The "is locally isomorphic to" relation for graphs is a relation. (Contributed by AV, 9-Jun-2025.) |
| ⊢ Rel ≃𝑙𝑔𝑟 | ||
| Theorem | grlicrcl 47960 | Reverse closure of the "is locally isomorphic to" relation for graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ≃𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | ||
| Theorem | dfgrlic2 47961* | Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣)))))) | ||
| Theorem | grilcbri 47962* | Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣))))) | ||
| Theorem | dfgrlic3 47963* | Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑣)) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
| Theorem | grilcbri2 47964* | Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑋)) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
| Theorem | grlicref 47965 | Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ∈ UHGraph → 𝐺 ≃𝑙𝑔𝑟 𝐺) | ||
| Theorem | grlicsym 47966 | Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑙𝑔𝑟 𝑆 → 𝑆 ≃𝑙𝑔𝑟 𝐺)) | ||
| Theorem | grlicsymb 47967 | Graph local isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
| ⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑙𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑙𝑔𝑟 𝐴)) | ||
| Theorem | grlictr 47968 | Graph local isomorphism is transitive. (Contributed by AV, 10-Jun-2025.) |
| ⊢ ((𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇) → 𝑅 ≃𝑙𝑔𝑟 𝑇) | ||
| Theorem | grlicer 47969 | Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025.) |
| ⊢ ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph | ||
| Theorem | grlicen 47970 | Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025.) |
| ⊢ 𝐵 = (Vtx‘𝑅) & ⊢ 𝐶 = (Vtx‘𝑆) ⇒ ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) | ||
| Theorem | gricgrlic 47971 | Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.) |
| ⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) | ||
| Theorem | clnbgr3stgrgrlic 47972* | If all (closed) neighborhoods of the vertices in two simple graphs with the same order induce a subgraph which is isomorphic to an 𝑁-star, then the two graphs are locally isomorphic. (Contributed by AV, 29-Sep-2025.) |
| ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (((𝐺 ∈ USGraph ∧ 𝐻 ∈ USGraph ∧ 𝑉 ≈ 𝑊) ∧ ∀𝑥 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑥)) ≃𝑔𝑟 (StarGr‘𝑁) ∧ ∀𝑦 ∈ 𝑊 (𝐻 ISubGr (𝐻 ClNeighbVtx 𝑦)) ≃𝑔𝑟 (StarGr‘𝑁)) → 𝐺 ≃𝑙𝑔𝑟 𝐻) | ||
| Theorem | usgrexmpl1lem 47973* | Lemma for usgrexmpl1 47974. (Contributed by AV, 2-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
| Theorem | usgrexmpl1 47974 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
| Theorem | usgrexmpl1vtx 47975 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | usgrexmpl1edg 47976 | The edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) | ||
| Theorem | usgrexmpl1tri 47977 | 𝐺 contains a triangle 0, 1, 2, with corresponding edges {0, 1}, {1, 2}, {0, 2}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐺) | ||
| Theorem | usgrexmpl2lem 47978* | Lemma for usgrexmpl2 47979. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
| Theorem | usgrexmpl2 47979 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5}. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
| Theorem | usgrexmpl2vtx 47980 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
| Theorem | usgrexmpl2edg 47981 | The edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) | ||
| Theorem | usgrexmpl2nblem 47982* | Lemma for usgrexmpl2nb0 47983 etc. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐾 ∈ ({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {𝐾, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}) | ||
| Theorem | usgrexmpl2nb0 47983 | The neighborhood of the first vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 0) = {1, 3, 5} | ||
| Theorem | usgrexmpl2nb1 47984 | The neighborhood of the second vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 1) = {0, 2} | ||
| Theorem | usgrexmpl2nb2 47985 | The neighborhood of the third vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 2) = {1, 3} | ||
| Theorem | usgrexmpl2nb3 47986 | The neighborhood of the forth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 3) = {0, 2, 4} | ||
| Theorem | usgrexmpl2nb4 47987 | The neighborhood of the fifth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 4) = {3, 5} | ||
| Theorem | usgrexmpl2nb5 47988 | The neighborhood of the sixth vertex of graph 𝐺. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 5) = {0, 4} | ||
| Theorem | usgrexmpl2trifr 47989* | 𝐺 is triangle-free. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) | ||
| Theorem | usgrexmpl12ngric 47990 | The graphs 𝐻 and 𝐺 are not isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 47977, whereas 𝐺 does not, see usgrexmpl2trifr 47989. (Contributed by AV, 10-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 | ||
| Theorem | usgrexmpl12ngrlic 47991 | The graphs 𝐻 and 𝐺 are not locally isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 47977, whereas 𝐺 does not, see usgrexmpl2trifr 47989. (Contributed by AV, 24-Aug-2025.) |
| ⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 | ||
According to Wikipedia "Generalized Petersen graph", 26-Aug-2025, https://en.wikipedia.org/wiki/Generalized_Petersen_graph: "In graph theory, the generalized Petersen graphs are a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. They include the Petersen graph and generalize one of the ways of constructing the Petersen graph. ... Among the generalized Petersen graphs are the n-prism, ...". The vertices of the regular polygon are called "outside vertices", the vertices of the star polygon "inside vertices" (see A. Steimle, W. Stanton, "The isomorphism classes of the generalized Petersen graphs", Discrete Mathematics Volume 309, Issue 1, 6 January 2009, Pages 231-237: https://doi.org/10.1016/j.disc.2007.12.074). Since regular polygons are also considered as star polygons (with density 1), many theorems for "inside vertices" (with labels containing the fragment "vtx1") can be specialized for "outside vertices" (with labels containing the fragment "vtx0"). | ||
| Syntax | cgpg 47992 | Extend class notation with generalized Petersen graphs. |
| class gPetersenGr | ||
| Definition | df-gpg 47993* |
Definition of generalized Petersen graphs according to Wikipedia
"Generalized Petersen graph", 26-Aug-2025,
https://en.wikipedia.org/wiki/Generalized_Petersen_graph:
"In
Watkins' notation, 𝐺(𝑛, 𝑘) is a graph with vertex set {
u0,
u1, ... , un-1, v0, v1, ... , vn-1 } and
edge set { ui ui+1 , ui
vi , vi vi+k | 0 ≤ 𝑖 ≤
(𝑛 − 1) }
where subscripts are to be
read modulo n and where 𝑘 < (𝑛 / 2). Some authors use the
notation GPG(n,k)."
Instead of 𝑛 ∈ ℕ, we could restrict the first argument to 𝑛 ∈ (ℤ≥‘3) (i.e., 3 ≤ 𝑛), because for 𝑛 ≤ 2, the definition is not meaningful (since then (⌈‘(𝑛 / 2)) ≤ 1 and therefore (1..^(⌈‘(𝑛 / 2))) = ∅, so that there would be no fitting second argument). (Contributed by AV, 26-Aug-2025.) |
| ⊢ gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {〈(Base‘ndx), ({0, 1} × (0..^𝑛))〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑛)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝑘) mod 𝑛)〉})})〉}) | ||
| Theorem | gpgov 47994* | The generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (𝑁 gPetersenGr 𝐾) = {〈(Base‘ndx), ({0, 1} × 𝐼)〉, 〈(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})〉}) | ||
| Theorem | gpgvtx 47995 | The vertices of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × 𝐼)) | ||
| Theorem | gpgiedg 47996* | The indexed edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (iEdg‘(𝑁 gPetersenGr 𝐾)) = ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})})) | ||
| Theorem | gpgedg 47997* | The edges of the generalized Petersen graph GPG(N,K). (Contributed by AV, 26-Aug-2025.) |
| ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐼 = (0..^𝑁) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Edg‘(𝑁 gPetersenGr 𝐾)) = {𝑒 ∈ 𝒫 ({0, 1} × 𝐼) ∣ ∃𝑥 ∈ 𝐼 (𝑒 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑒 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑒 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉})}) | ||
| Theorem | gpgiedgdmellem 47998* | Lemma for gpgiedgdmel 48001 and gpgedgel 48002. (Contributed by AV, 2-Nov-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ 𝐼 (𝑌 = {〈0, 𝑥〉, 〈0, ((𝑥 + 1) mod 𝑁)〉} ∨ 𝑌 = {〈0, 𝑥〉, 〈1, 𝑥〉} ∨ 𝑌 = {〈1, 𝑥〉, 〈1, ((𝑥 + 𝐾) mod 𝑁)〉}) → 𝑌 ∈ 𝒫 ({0, 1} × 𝐼))) | ||
| Theorem | gpgvtxel 47999* | A vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 29-Aug-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ 𝐼 𝑋 = 〈𝑥, 𝑦〉)) | ||
| Theorem | gpgvtxel2 48000 | The second component of a vertex in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.) |
| ⊢ 𝐼 = (0..^𝑁) & ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) & ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) & ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ 𝐼) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |