Detailed syntax breakdown of Definition df-haus
| Step | Hyp | Ref
| Expression |
| 1 | | cha 23316 |
. 2
class
Haus |
| 2 | | vx |
. . . . . . . 8
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 4 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 5 | 4 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 6 | 3, 5 | wne 2940 |
. . . . . 6
wff 𝑥 ≠ 𝑦 |
| 7 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
| 8 | 2, 7 | wel 2109 |
. . . . . . . . 9
wff 𝑥 ∈ 𝑛 |
| 9 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
| 10 | 4, 9 | wel 2109 |
. . . . . . . . 9
wff 𝑦 ∈ 𝑚 |
| 11 | 7 | cv 1539 |
. . . . . . . . . . 11
class 𝑛 |
| 12 | 9 | cv 1539 |
. . . . . . . . . . 11
class 𝑚 |
| 13 | 11, 12 | cin 3950 |
. . . . . . . . . 10
class (𝑛 ∩ 𝑚) |
| 14 | | c0 4333 |
. . . . . . . . . 10
class
∅ |
| 15 | 13, 14 | wceq 1540 |
. . . . . . . . 9
wff (𝑛 ∩ 𝑚) = ∅ |
| 16 | 8, 10, 15 | w3a 1087 |
. . . . . . . 8
wff (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) |
| 17 | | vj |
. . . . . . . . 9
setvar 𝑗 |
| 18 | 17 | cv 1539 |
. . . . . . . 8
class 𝑗 |
| 19 | 16, 9, 18 | wrex 3070 |
. . . . . . 7
wff
∃𝑚 ∈
𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) |
| 20 | 19, 7, 18 | wrex 3070 |
. . . . . 6
wff
∃𝑛 ∈
𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) |
| 21 | 6, 20 | wi 4 |
. . . . 5
wff (𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
| 22 | 18 | cuni 4907 |
. . . . 5
class ∪ 𝑗 |
| 23 | 21, 4, 22 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
| 24 | 23, 2, 22 | wral 3061 |
. . 3
wff
∀𝑥 ∈
∪ 𝑗∀𝑦 ∈ ∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
| 25 | | ctop 22899 |
. . 3
class
Top |
| 26 | 24, 17, 25 | crab 3436 |
. 2
class {𝑗 ∈ Top ∣
∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))} |
| 27 | 1, 26 | wceq 1540 |
1
wff Haus =
{𝑗 ∈ Top ∣
∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))} |