Detailed syntax breakdown of Definition df-haus
Step | Hyp | Ref
| Expression |
1 | | cha 22023 |
. 2
class
Haus |
2 | | vx |
. . . . . . . 8
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑥 |
4 | | vy |
. . . . . . . 8
setvar 𝑦 |
5 | 4 | cv 1538 |
. . . . . . 7
class 𝑦 |
6 | 3, 5 | wne 2952 |
. . . . . 6
wff 𝑥 ≠ 𝑦 |
7 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
8 | 2, 7 | wel 2113 |
. . . . . . . . 9
wff 𝑥 ∈ 𝑛 |
9 | | vm |
. . . . . . . . . 10
setvar 𝑚 |
10 | 4, 9 | wel 2113 |
. . . . . . . . 9
wff 𝑦 ∈ 𝑚 |
11 | 7 | cv 1538 |
. . . . . . . . . . 11
class 𝑛 |
12 | 9 | cv 1538 |
. . . . . . . . . . 11
class 𝑚 |
13 | 11, 12 | cin 3860 |
. . . . . . . . . 10
class (𝑛 ∩ 𝑚) |
14 | | c0 4228 |
. . . . . . . . . 10
class
∅ |
15 | 13, 14 | wceq 1539 |
. . . . . . . . 9
wff (𝑛 ∩ 𝑚) = ∅ |
16 | 8, 10, 15 | w3a 1085 |
. . . . . . . 8
wff (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) |
17 | | vj |
. . . . . . . . 9
setvar 𝑗 |
18 | 17 | cv 1538 |
. . . . . . . 8
class 𝑗 |
19 | 16, 9, 18 | wrex 3072 |
. . . . . . 7
wff
∃𝑚 ∈
𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) |
20 | 19, 7, 18 | wrex 3072 |
. . . . . 6
wff
∃𝑛 ∈
𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅) |
21 | 6, 20 | wi 4 |
. . . . 5
wff (𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
22 | 18 | cuni 4802 |
. . . . 5
class ∪ 𝑗 |
23 | 21, 4, 22 | wral 3071 |
. . . 4
wff
∀𝑦 ∈
∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
24 | 23, 2, 22 | wral 3071 |
. . 3
wff
∀𝑥 ∈
∪ 𝑗∀𝑦 ∈ ∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)) |
25 | | ctop 21608 |
. . 3
class
Top |
26 | 24, 17, 25 | crab 3075 |
. 2
class {𝑗 ∈ Top ∣
∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))} |
27 | 1, 26 | wceq 1539 |
1
wff Haus =
{𝑗 ∈ Top ∣
∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))} |