Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-t1 | Structured version Visualization version GIF version |
Description: The class of all T1 spaces, also called Fréchet spaces. Morris, Topology without tears, p. 30 ex. 3. (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
df-t1 | ⊢ Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ct1 22008 | . 2 class Fre | |
2 | va | . . . . . . 7 setvar 𝑎 | |
3 | 2 | cv 1538 | . . . . . 6 class 𝑎 |
4 | 3 | csn 4523 | . . . . 5 class {𝑎} |
5 | vx | . . . . . . 7 setvar 𝑥 | |
6 | 5 | cv 1538 | . . . . . 6 class 𝑥 |
7 | ccld 21717 | . . . . . 6 class Clsd | |
8 | 6, 7 | cfv 6336 | . . . . 5 class (Clsd‘𝑥) |
9 | 4, 8 | wcel 2112 | . . . 4 wff {𝑎} ∈ (Clsd‘𝑥) |
10 | 6 | cuni 4799 | . . . 4 class ∪ 𝑥 |
11 | 9, 2, 10 | wral 3071 | . . 3 wff ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥) |
12 | ctop 21594 | . . 3 class Top | |
13 | 11, 5, 12 | crab 3075 | . 2 class {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} |
14 | 1, 13 | wceq 1539 | 1 wff Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} |
Colors of variables: wff setvar class |
This definition is referenced by: ist1 22022 |
Copyright terms: Public domain | W3C validator |