MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-t1 Structured version   Visualization version   GIF version

Definition df-t1 22818
Description: The class of all T1 spaces, also called FrΓ©chet spaces. Morris, Topology without tears, p. 30 ex. 3. (Contributed by FL, 18-Jun-2007.)
Assertion
Ref Expression
df-t1 Fre = {π‘₯ ∈ Top ∣ βˆ€π‘Ž ∈ βˆͺ π‘₯{π‘Ž} ∈ (Clsdβ€˜π‘₯)}
Distinct variable group:   π‘₯,π‘Ž

Detailed syntax breakdown of Definition df-t1
StepHypRef Expression
1 ct1 22811 . 2 class Fre
2 va . . . . . . 7 setvar π‘Ž
32cv 1541 . . . . . 6 class π‘Ž
43csn 4629 . . . . 5 class {π‘Ž}
5 vx . . . . . . 7 setvar π‘₯
65cv 1541 . . . . . 6 class π‘₯
7 ccld 22520 . . . . . 6 class Clsd
86, 7cfv 6544 . . . . 5 class (Clsdβ€˜π‘₯)
94, 8wcel 2107 . . . 4 wff {π‘Ž} ∈ (Clsdβ€˜π‘₯)
106cuni 4909 . . . 4 class βˆͺ π‘₯
119, 2, 10wral 3062 . . 3 wff βˆ€π‘Ž ∈ βˆͺ π‘₯{π‘Ž} ∈ (Clsdβ€˜π‘₯)
12 ctop 22395 . . 3 class Top
1311, 5, 12crab 3433 . 2 class {π‘₯ ∈ Top ∣ βˆ€π‘Ž ∈ βˆͺ π‘₯{π‘Ž} ∈ (Clsdβ€˜π‘₯)}
141, 13wceq 1542 1 wff Fre = {π‘₯ ∈ Top ∣ βˆ€π‘Ž ∈ βˆͺ π‘₯{π‘Ž} ∈ (Clsdβ€˜π‘₯)}
Colors of variables: wff setvar class
This definition is referenced by:  ist1  22825
  Copyright terms: Public domain W3C validator