MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishaus Structured version   Visualization version   GIF version

Theorem ishaus 22381
Description: The predicate "is a Hausdorff space". (Contributed by NM, 8-Mar-2007.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
ishaus (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
Distinct variable groups:   𝑥,𝑦   𝑚,𝑛,𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑋(𝑚,𝑛)

Proof of Theorem ishaus
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4847 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ist0.1 . . . 4 𝑋 = 𝐽
31, 2eqtr4di 2797 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 rexeq 3334 . . . . . 6 (𝑗 = 𝐽 → (∃𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)))
54rexeqbi1dv 3332 . . . . 5 (𝑗 = 𝐽 → (∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)))
65imbi2d 340 . . . 4 (𝑗 = 𝐽 → ((𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
73, 6raleqbidv 3327 . . 3 (𝑗 = 𝐽 → (∀𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ ∀𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
83, 7raleqbidv 3327 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
9 df-haus 22374 . 2 Haus = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))}
108, 9elrab2 3620 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cin 3882  c0 4253   cuni 4836  Topctop 21950  Hauscha 22367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837  df-haus 22374
This theorem is referenced by:  hausnei  22387  haustop  22390  ishaus2  22410  cnhaus  22413  dishaus  22441  pthaus  22697  hausdiag  22704  txhaus  22706  xkohaus  22712
  Copyright terms: Public domain W3C validator