MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishaus Structured version   Visualization version   GIF version

Theorem ishaus 23346
Description: The predicate "is a Hausdorff space". (Contributed by NM, 8-Mar-2007.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
ishaus (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
Distinct variable groups:   𝑥,𝑦   𝑚,𝑛,𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑋(𝑚,𝑛)

Proof of Theorem ishaus
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4923 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ist0.1 . . . 4 𝑋 = 𝐽
31, 2eqtr4di 2793 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 rexeq 3320 . . . . . 6 (𝑗 = 𝐽 → (∃𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)))
54rexeqbi1dv 3337 . . . . 5 (𝑗 = 𝐽 → (∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)))
65imbi2d 340 . . . 4 (𝑗 = 𝐽 → ((𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
73, 6raleqbidv 3344 . . 3 (𝑗 = 𝐽 → (∀𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ ∀𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
83, 7raleqbidv 3344 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
9 df-haus 23339 . 2 Haus = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))}
108, 9elrab2 3698 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  cin 3962  c0 4339   cuni 4912  Topctop 22915  Hauscha 23332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-ss 3980  df-uni 4913  df-haus 23339
This theorem is referenced by:  hausnei  23352  haustop  23355  ishaus2  23375  cnhaus  23378  dishaus  23406  pthaus  23662  hausdiag  23669  txhaus  23671  xkohaus  23677
  Copyright terms: Public domain W3C validator