MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishaus Structured version   Visualization version   GIF version

Theorem ishaus 22022
Description: The predicate "is a Hausdorff space". (Contributed by NM, 8-Mar-2007.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
ishaus (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
Distinct variable groups:   𝑥,𝑦   𝑚,𝑛,𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑋(𝑚,𝑛)

Proof of Theorem ishaus
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 unieq 4809 . . . 4 (𝑗 = 𝐽 𝑗 = 𝐽)
2 ist0.1 . . . 4 𝑋 = 𝐽
31, 2eqtr4di 2811 . . 3 (𝑗 = 𝐽 𝑗 = 𝑋)
4 rexeq 3324 . . . . . 6 (𝑗 = 𝐽 → (∃𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)))
54rexeqbi1dv 3322 . . . . 5 (𝑗 = 𝐽 → (∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅) ↔ ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)))
65imbi2d 344 . . . 4 (𝑗 = 𝐽 → ((𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
73, 6raleqbidv 3319 . . 3 (𝑗 = 𝐽 → (∀𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ ∀𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
83, 7raleqbidv 3319 . 2 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
9 df-haus 22015 . 2 Haus = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))}
108, 9elrab2 3605 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑦 → ∃𝑛𝐽𝑚𝐽 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  cin 3857  c0 4225   cuni 4798  Topctop 21593  Hauscha 22008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-in 3865  df-ss 3875  df-uni 4799  df-haus 22015
This theorem is referenced by:  hausnei  22028  haustop  22031  ishaus2  22051  cnhaus  22054  dishaus  22082  pthaus  22338  hausdiag  22345  txhaus  22347  xkohaus  22353
  Copyright terms: Public domain W3C validator