Detailed syntax breakdown of Definition df-reg
| Step | Hyp | Ref
| Expression |
| 1 | | creg 23317 |
. 2
class
Reg |
| 2 | | vy |
. . . . . . . 8
setvar 𝑦 |
| 3 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 4 | 2, 3 | wel 2109 |
. . . . . . 7
wff 𝑦 ∈ 𝑧 |
| 5 | 3 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 6 | | vj |
. . . . . . . . . . 11
setvar 𝑗 |
| 7 | 6 | cv 1539 |
. . . . . . . . . 10
class 𝑗 |
| 8 | | ccl 23026 |
. . . . . . . . . 10
class
cls |
| 9 | 7, 8 | cfv 6561 |
. . . . . . . . 9
class
(cls‘𝑗) |
| 10 | 5, 9 | cfv 6561 |
. . . . . . . 8
class
((cls‘𝑗)‘𝑧) |
| 11 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 12 | 11 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 13 | 10, 12 | wss 3951 |
. . . . . . 7
wff
((cls‘𝑗)‘𝑧) ⊆ 𝑥 |
| 14 | 4, 13 | wa 395 |
. . . . . 6
wff (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
| 15 | 14, 3, 7 | wrex 3070 |
. . . . 5
wff
∃𝑧 ∈
𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
| 16 | 15, 2, 12 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
| 17 | 16, 11, 7 | wral 3061 |
. . 3
wff
∀𝑥 ∈
𝑗 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥) |
| 18 | | ctop 22899 |
. . 3
class
Top |
| 19 | 17, 6, 18 | crab 3436 |
. 2
class {𝑗 ∈ Top ∣
∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} |
| 20 | 1, 19 | wceq 1540 |
1
wff Reg =
{𝑗 ∈ Top ∣
∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} |