Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-hdmap1 Structured version   Visualization version   GIF version

Definition df-hdmap1 40750
Description: Define preliminary map from vectors to functionals in the closed kernel dual space. See hdmap1fval 40753 description for more details. (Contributed by NM, 14-May-2015.)
Assertion
Ref Expression
df-hdmap1 HDMap1 = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {π‘Ž ∣ [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜π‘’) / 𝑣][(LSpanβ€˜π‘’) / 𝑛][((LCDualβ€˜π‘˜)β€˜π‘€) / 𝑐][(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))}))
Distinct variable group:   π‘Ž,𝑐,𝑑,β„Ž,𝑗,π‘˜,π‘š,𝑛,𝑒,𝑣,𝑀,π‘₯

Detailed syntax breakdown of Definition df-hdmap1
StepHypRef Expression
1 chdma1 40748 . 2 class HDMap1
2 vk . . 3 setvar π‘˜
3 cvv 3474 . . 3 class V
4 vw . . . 4 setvar 𝑀
52cv 1540 . . . . 5 class π‘˜
6 clh 38941 . . . . 5 class LHyp
75, 6cfv 6543 . . . 4 class (LHypβ€˜π‘˜)
8 va . . . . . . . . . . . . . 14 setvar π‘Ž
98cv 1540 . . . . . . . . . . . . 13 class π‘Ž
10 vx . . . . . . . . . . . . . 14 setvar π‘₯
11 vv . . . . . . . . . . . . . . . . 17 setvar 𝑣
1211cv 1540 . . . . . . . . . . . . . . . 16 class 𝑣
13 vd . . . . . . . . . . . . . . . . 17 setvar 𝑑
1413cv 1540 . . . . . . . . . . . . . . . 16 class 𝑑
1512, 14cxp 5674 . . . . . . . . . . . . . . 15 class (𝑣 Γ— 𝑑)
1615, 12cxp 5674 . . . . . . . . . . . . . 14 class ((𝑣 Γ— 𝑑) Γ— 𝑣)
1710cv 1540 . . . . . . . . . . . . . . . . 17 class π‘₯
18 c2nd 7976 . . . . . . . . . . . . . . . . 17 class 2nd
1917, 18cfv 6543 . . . . . . . . . . . . . . . 16 class (2nd β€˜π‘₯)
20 vu . . . . . . . . . . . . . . . . . 18 setvar 𝑒
2120cv 1540 . . . . . . . . . . . . . . . . 17 class 𝑒
22 c0g 17387 . . . . . . . . . . . . . . . . 17 class 0g
2321, 22cfv 6543 . . . . . . . . . . . . . . . 16 class (0gβ€˜π‘’)
2419, 23wceq 1541 . . . . . . . . . . . . . . 15 wff (2nd β€˜π‘₯) = (0gβ€˜π‘’)
25 vc . . . . . . . . . . . . . . . . 17 setvar 𝑐
2625cv 1540 . . . . . . . . . . . . . . . 16 class 𝑐
2726, 22cfv 6543 . . . . . . . . . . . . . . 15 class (0gβ€˜π‘)
2819csn 4628 . . . . . . . . . . . . . . . . . . . 20 class {(2nd β€˜π‘₯)}
29 vn . . . . . . . . . . . . . . . . . . . . 21 setvar 𝑛
3029cv 1540 . . . . . . . . . . . . . . . . . . . 20 class 𝑛
3128, 30cfv 6543 . . . . . . . . . . . . . . . . . . 19 class (π‘›β€˜{(2nd β€˜π‘₯)})
32 vm . . . . . . . . . . . . . . . . . . . 20 setvar π‘š
3332cv 1540 . . . . . . . . . . . . . . . . . . 19 class π‘š
3431, 33cfv 6543 . . . . . . . . . . . . . . . . . 18 class (π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)}))
35 vh . . . . . . . . . . . . . . . . . . . . 21 setvar β„Ž
3635cv 1540 . . . . . . . . . . . . . . . . . . . 20 class β„Ž
3736csn 4628 . . . . . . . . . . . . . . . . . . 19 class {β„Ž}
38 vj . . . . . . . . . . . . . . . . . . . 20 setvar 𝑗
3938cv 1540 . . . . . . . . . . . . . . . . . . 19 class 𝑗
4037, 39cfv 6543 . . . . . . . . . . . . . . . . . 18 class (π‘—β€˜{β„Ž})
4134, 40wceq 1541 . . . . . . . . . . . . . . . . 17 wff (π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž})
42 c1st 7975 . . . . . . . . . . . . . . . . . . . . . . . 24 class 1st
4317, 42cfv 6543 . . . . . . . . . . . . . . . . . . . . . . 23 class (1st β€˜π‘₯)
4443, 42cfv 6543 . . . . . . . . . . . . . . . . . . . . . 22 class (1st β€˜(1st β€˜π‘₯))
45 csg 18823 . . . . . . . . . . . . . . . . . . . . . . 23 class -g
4621, 45cfv 6543 . . . . . . . . . . . . . . . . . . . . . 22 class (-gβ€˜π‘’)
4744, 19, 46co 7411 . . . . . . . . . . . . . . . . . . . . 21 class ((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))
4847csn 4628 . . . . . . . . . . . . . . . . . . . 20 class {((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))}
4948, 30cfv 6543 . . . . . . . . . . . . . . . . . . 19 class (π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})
5049, 33cfv 6543 . . . . . . . . . . . . . . . . . 18 class (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))}))
5143, 18cfv 6543 . . . . . . . . . . . . . . . . . . . . 21 class (2nd β€˜(1st β€˜π‘₯))
5226, 45cfv 6543 . . . . . . . . . . . . . . . . . . . . 21 class (-gβ€˜π‘)
5351, 36, 52co 7411 . . . . . . . . . . . . . . . . . . . 20 class ((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)
5453csn 4628 . . . . . . . . . . . . . . . . . . 19 class {((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)}
5554, 39cfv 6543 . . . . . . . . . . . . . . . . . 18 class (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})
5650, 55wceq 1541 . . . . . . . . . . . . . . . . 17 wff (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})
5741, 56wa 396 . . . . . . . . . . . . . . . 16 wff ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)}))
5857, 35, 14crio 7366 . . . . . . . . . . . . . . 15 class (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))
5924, 27, 58cif 4528 . . . . . . . . . . . . . 14 class if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)}))))
6010, 16, 59cmpt 5231 . . . . . . . . . . . . 13 class (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))
619, 60wcel 2106 . . . . . . . . . . . 12 wff π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))
624cv 1540 . . . . . . . . . . . . 13 class 𝑀
63 cmpd 40581 . . . . . . . . . . . . . 14 class mapd
645, 63cfv 6543 . . . . . . . . . . . . 13 class (mapdβ€˜π‘˜)
6562, 64cfv 6543 . . . . . . . . . . . 12 class ((mapdβ€˜π‘˜)β€˜π‘€)
6661, 32, 65wsbc 3777 . . . . . . . . . . 11 wff [((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))
67 clspn 20587 . . . . . . . . . . . 12 class LSpan
6826, 67cfv 6543 . . . . . . . . . . 11 class (LSpanβ€˜π‘)
6966, 38, 68wsbc 3777 . . . . . . . . . 10 wff [(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))
70 cbs 17146 . . . . . . . . . . 11 class Base
7126, 70cfv 6543 . . . . . . . . . 10 class (Baseβ€˜π‘)
7269, 13, 71wsbc 3777 . . . . . . . . 9 wff [(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))
73 clcd 40543 . . . . . . . . . . 11 class LCDual
745, 73cfv 6543 . . . . . . . . . 10 class (LCDualβ€˜π‘˜)
7562, 74cfv 6543 . . . . . . . . 9 class ((LCDualβ€˜π‘˜)β€˜π‘€)
7672, 25, 75wsbc 3777 . . . . . . . 8 wff [((LCDualβ€˜π‘˜)β€˜π‘€) / 𝑐][(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))
7721, 67cfv 6543 . . . . . . . 8 class (LSpanβ€˜π‘’)
7876, 29, 77wsbc 3777 . . . . . . 7 wff [(LSpanβ€˜π‘’) / 𝑛][((LCDualβ€˜π‘˜)β€˜π‘€) / 𝑐][(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))
7921, 70cfv 6543 . . . . . . 7 class (Baseβ€˜π‘’)
8078, 11, 79wsbc 3777 . . . . . 6 wff [(Baseβ€˜π‘’) / 𝑣][(LSpanβ€˜π‘’) / 𝑛][((LCDualβ€˜π‘˜)β€˜π‘€) / 𝑐][(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))
81 cdvh 40035 . . . . . . . 8 class DVecH
825, 81cfv 6543 . . . . . . 7 class (DVecHβ€˜π‘˜)
8362, 82cfv 6543 . . . . . 6 class ((DVecHβ€˜π‘˜)β€˜π‘€)
8480, 20, 83wsbc 3777 . . . . 5 wff [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜π‘’) / 𝑣][(LSpanβ€˜π‘’) / 𝑛][((LCDualβ€˜π‘˜)β€˜π‘€) / 𝑐][(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))
8584, 8cab 2709 . . . 4 class {π‘Ž ∣ [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜π‘’) / 𝑣][(LSpanβ€˜π‘’) / 𝑛][((LCDualβ€˜π‘˜)β€˜π‘€) / 𝑐][(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))}
864, 7, 85cmpt 5231 . . 3 class (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {π‘Ž ∣ [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜π‘’) / 𝑣][(LSpanβ€˜π‘’) / 𝑛][((LCDualβ€˜π‘˜)β€˜π‘€) / 𝑐][(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))})
872, 3, 86cmpt 5231 . 2 class (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {π‘Ž ∣ [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜π‘’) / 𝑣][(LSpanβ€˜π‘’) / 𝑛][((LCDualβ€˜π‘˜)β€˜π‘€) / 𝑐][(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))}))
881, 87wceq 1541 1 wff HDMap1 = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {π‘Ž ∣ [((DVecHβ€˜π‘˜)β€˜π‘€) / 𝑒][(Baseβ€˜π‘’) / 𝑣][(LSpanβ€˜π‘’) / 𝑛][((LCDualβ€˜π‘˜)β€˜π‘€) / 𝑐][(Baseβ€˜π‘) / 𝑑][(LSpanβ€˜π‘) / 𝑗][((mapdβ€˜π‘˜)β€˜π‘€) / π‘š]π‘Ž ∈ (π‘₯ ∈ ((𝑣 Γ— 𝑑) Γ— 𝑣) ↦ if((2nd β€˜π‘₯) = (0gβ€˜π‘’), (0gβ€˜π‘), (β„©β„Ž ∈ 𝑑 ((π‘šβ€˜(π‘›β€˜{(2nd β€˜π‘₯)})) = (π‘—β€˜{β„Ž}) ∧ (π‘šβ€˜(π‘›β€˜{((1st β€˜(1st β€˜π‘₯))(-gβ€˜π‘’)(2nd β€˜π‘₯))})) = (π‘—β€˜{((2nd β€˜(1st β€˜π‘₯))(-gβ€˜π‘)β„Ž)})))))}))
Colors of variables: wff setvar class
This definition is referenced by:  hdmap1ffval  40752
  Copyright terms: Public domain W3C validator