Detailed syntax breakdown of Definition df-hdmap1
| Step | Hyp | Ref
| Expression |
| 1 | | chdma1 41734 |
. 2
class
HDMap1 |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3464 |
. . 3
class
V |
| 4 | | vw |
. . . 4
setvar 𝑤 |
| 5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
| 6 | | clh 39927 |
. . . . 5
class
LHyp |
| 7 | 5, 6 | cfv 6542 |
. . . 4
class
(LHyp‘𝑘) |
| 8 | | va |
. . . . . . . . . . . . . 14
setvar 𝑎 |
| 9 | 8 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑎 |
| 10 | | vx |
. . . . . . . . . . . . . 14
setvar 𝑥 |
| 11 | | vv |
. . . . . . . . . . . . . . . . 17
setvar 𝑣 |
| 12 | 11 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑣 |
| 13 | | vd |
. . . . . . . . . . . . . . . . 17
setvar 𝑑 |
| 14 | 13 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑑 |
| 15 | 12, 14 | cxp 5665 |
. . . . . . . . . . . . . . 15
class (𝑣 × 𝑑) |
| 16 | 15, 12 | cxp 5665 |
. . . . . . . . . . . . . 14
class ((𝑣 × 𝑑) × 𝑣) |
| 17 | 10 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑥 |
| 18 | | c2nd 7996 |
. . . . . . . . . . . . . . . . 17
class
2nd |
| 19 | 17, 18 | cfv 6542 |
. . . . . . . . . . . . . . . 16
class
(2nd ‘𝑥) |
| 20 | | vu |
. . . . . . . . . . . . . . . . . 18
setvar 𝑢 |
| 21 | 20 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑢 |
| 22 | | c0g 17460 |
. . . . . . . . . . . . . . . . 17
class
0g |
| 23 | 21, 22 | cfv 6542 |
. . . . . . . . . . . . . . . 16
class
(0g‘𝑢) |
| 24 | 19, 23 | wceq 1539 |
. . . . . . . . . . . . . . 15
wff
(2nd ‘𝑥) = (0g‘𝑢) |
| 25 | | vc |
. . . . . . . . . . . . . . . . 17
setvar 𝑐 |
| 26 | 25 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑐 |
| 27 | 26, 22 | cfv 6542 |
. . . . . . . . . . . . . . 15
class
(0g‘𝑐) |
| 28 | 19 | csn 4608 |
. . . . . . . . . . . . . . . . . . . 20
class
{(2nd ‘𝑥)} |
| 29 | | vn |
. . . . . . . . . . . . . . . . . . . . 21
setvar 𝑛 |
| 30 | 29 | cv 1538 |
. . . . . . . . . . . . . . . . . . . 20
class 𝑛 |
| 31 | 28, 30 | cfv 6542 |
. . . . . . . . . . . . . . . . . . 19
class (𝑛‘{(2nd
‘𝑥)}) |
| 32 | | vm |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑚 |
| 33 | 32 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑚 |
| 34 | 31, 33 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class (𝑚‘(𝑛‘{(2nd ‘𝑥)})) |
| 35 | | vh |
. . . . . . . . . . . . . . . . . . . . 21
setvar ℎ |
| 36 | 35 | cv 1538 |
. . . . . . . . . . . . . . . . . . . 20
class ℎ |
| 37 | 36 | csn 4608 |
. . . . . . . . . . . . . . . . . . 19
class {ℎ} |
| 38 | | vj |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑗 |
| 39 | 38 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑗 |
| 40 | 37, 39 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class (𝑗‘{ℎ}) |
| 41 | 34, 40 | wceq 1539 |
. . . . . . . . . . . . . . . . 17
wff (𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) |
| 42 | | c1st 7995 |
. . . . . . . . . . . . . . . . . . . . . . . 24
class
1st |
| 43 | 17, 42 | cfv 6542 |
. . . . . . . . . . . . . . . . . . . . . . 23
class
(1st ‘𝑥) |
| 44 | 43, 42 | cfv 6542 |
. . . . . . . . . . . . . . . . . . . . . 22
class
(1st ‘(1st ‘𝑥)) |
| 45 | | csg 18927 |
. . . . . . . . . . . . . . . . . . . . . . 23
class
-g |
| 46 | 21, 45 | cfv 6542 |
. . . . . . . . . . . . . . . . . . . . . 22
class
(-g‘𝑢) |
| 47 | 44, 19, 46 | co 7414 |
. . . . . . . . . . . . . . . . . . . . 21
class
((1st ‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥)) |
| 48 | 47 | csn 4608 |
. . . . . . . . . . . . . . . . . . . 20
class
{((1st ‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))} |
| 49 | 48, 30 | cfv 6542 |
. . . . . . . . . . . . . . . . . . 19
class (𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))}) |
| 50 | 49, 33 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) |
| 51 | 43, 18 | cfv 6542 |
. . . . . . . . . . . . . . . . . . . . 21
class
(2nd ‘(1st ‘𝑥)) |
| 52 | 26, 45 | cfv 6542 |
. . . . . . . . . . . . . . . . . . . . 21
class
(-g‘𝑐) |
| 53 | 51, 36, 52 | co 7414 |
. . . . . . . . . . . . . . . . . . . 20
class
((2nd ‘(1st ‘𝑥))(-g‘𝑐)ℎ) |
| 54 | 53 | csn 4608 |
. . . . . . . . . . . . . . . . . . 19
class
{((2nd ‘(1st ‘𝑥))(-g‘𝑐)ℎ)} |
| 55 | 54, 39 | cfv 6542 |
. . . . . . . . . . . . . . . . . 18
class (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}) |
| 56 | 50, 55 | wceq 1539 |
. . . . . . . . . . . . . . . . 17
wff (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}) |
| 57 | 41, 56 | wa 395 |
. . . . . . . . . . . . . . . 16
wff ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})) |
| 58 | 57, 35, 14 | crio 7370 |
. . . . . . . . . . . . . . 15
class
(℩ℎ
∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))) |
| 59 | 24, 27, 58 | cif 4507 |
. . . . . . . . . . . . . 14
class
if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))) |
| 60 | 10, 16, 59 | cmpt 5207 |
. . . . . . . . . . . . 13
class (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) |
| 61 | 9, 60 | wcel 2107 |
. . . . . . . . . . . 12
wff 𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) |
| 62 | 4 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑤 |
| 63 | | cmpd 41567 |
. . . . . . . . . . . . . 14
class
mapd |
| 64 | 5, 63 | cfv 6542 |
. . . . . . . . . . . . 13
class
(mapd‘𝑘) |
| 65 | 62, 64 | cfv 6542 |
. . . . . . . . . . . 12
class
((mapd‘𝑘)‘𝑤) |
| 66 | 61, 32, 65 | wsbc 3772 |
. . . . . . . . . . 11
wff
[((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) |
| 67 | | clspn 20942 |
. . . . . . . . . . . 12
class
LSpan |
| 68 | 26, 67 | cfv 6542 |
. . . . . . . . . . 11
class
(LSpan‘𝑐) |
| 69 | 66, 38, 68 | wsbc 3772 |
. . . . . . . . . 10
wff
[(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) |
| 70 | | cbs 17230 |
. . . . . . . . . . 11
class
Base |
| 71 | 26, 70 | cfv 6542 |
. . . . . . . . . 10
class
(Base‘𝑐) |
| 72 | 69, 13, 71 | wsbc 3772 |
. . . . . . . . 9
wff
[(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) |
| 73 | | clcd 41529 |
. . . . . . . . . . 11
class
LCDual |
| 74 | 5, 73 | cfv 6542 |
. . . . . . . . . 10
class
(LCDual‘𝑘) |
| 75 | 62, 74 | cfv 6542 |
. . . . . . . . 9
class
((LCDual‘𝑘)‘𝑤) |
| 76 | 72, 25, 75 | wsbc 3772 |
. . . . . . . 8
wff
[((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) |
| 77 | 21, 67 | cfv 6542 |
. . . . . . . 8
class
(LSpan‘𝑢) |
| 78 | 76, 29, 77 | wsbc 3772 |
. . . . . . 7
wff
[(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) |
| 79 | 21, 70 | cfv 6542 |
. . . . . . 7
class
(Base‘𝑢) |
| 80 | 78, 11, 79 | wsbc 3772 |
. . . . . 6
wff
[(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) |
| 81 | | cdvh 41021 |
. . . . . . . 8
class
DVecH |
| 82 | 5, 81 | cfv 6542 |
. . . . . . 7
class
(DVecH‘𝑘) |
| 83 | 62, 82 | cfv 6542 |
. . . . . 6
class
((DVecH‘𝑘)‘𝑤) |
| 84 | 80, 20, 83 | wsbc 3772 |
. . . . 5
wff
[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) |
| 85 | 84, 8 | cab 2712 |
. . . 4
class {𝑎 ∣
[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))} |
| 86 | 4, 7, 85 | cmpt 5207 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))}) |
| 87 | 2, 3, 86 | cmpt 5207 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})) |
| 88 | 1, 87 | wceq 1539 |
1
wff HDMap1 =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})) |