Step | Hyp | Ref
| Expression |
1 | | chdma1 40748 |
. 2
class
HDMap1 |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar π€ |
5 | 2 | cv 1540 |
. . . . 5
class π |
6 | | clh 38941 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6543 |
. . . 4
class
(LHypβπ) |
8 | | va |
. . . . . . . . . . . . . 14
setvar π |
9 | 8 | cv 1540 |
. . . . . . . . . . . . 13
class π |
10 | | vx |
. . . . . . . . . . . . . 14
setvar π₯ |
11 | | vv |
. . . . . . . . . . . . . . . . 17
setvar π£ |
12 | 11 | cv 1540 |
. . . . . . . . . . . . . . . 16
class π£ |
13 | | vd |
. . . . . . . . . . . . . . . . 17
setvar π |
14 | 13 | cv 1540 |
. . . . . . . . . . . . . . . 16
class π |
15 | 12, 14 | cxp 5674 |
. . . . . . . . . . . . . . 15
class (π£ Γ π) |
16 | 15, 12 | cxp 5674 |
. . . . . . . . . . . . . 14
class ((π£ Γ π) Γ π£) |
17 | 10 | cv 1540 |
. . . . . . . . . . . . . . . . 17
class π₯ |
18 | | c2nd 7976 |
. . . . . . . . . . . . . . . . 17
class
2nd |
19 | 17, 18 | cfv 6543 |
. . . . . . . . . . . . . . . 16
class
(2nd βπ₯) |
20 | | vu |
. . . . . . . . . . . . . . . . . 18
setvar π’ |
21 | 20 | cv 1540 |
. . . . . . . . . . . . . . . . 17
class π’ |
22 | | c0g 17387 |
. . . . . . . . . . . . . . . . 17
class
0g |
23 | 21, 22 | cfv 6543 |
. . . . . . . . . . . . . . . 16
class
(0gβπ’) |
24 | 19, 23 | wceq 1541 |
. . . . . . . . . . . . . . 15
wff
(2nd βπ₯) = (0gβπ’) |
25 | | vc |
. . . . . . . . . . . . . . . . 17
setvar π |
26 | 25 | cv 1540 |
. . . . . . . . . . . . . . . 16
class π |
27 | 26, 22 | cfv 6543 |
. . . . . . . . . . . . . . 15
class
(0gβπ) |
28 | 19 | csn 4628 |
. . . . . . . . . . . . . . . . . . . 20
class
{(2nd βπ₯)} |
29 | | vn |
. . . . . . . . . . . . . . . . . . . . 21
setvar π |
30 | 29 | cv 1540 |
. . . . . . . . . . . . . . . . . . . 20
class π |
31 | 28, 30 | cfv 6543 |
. . . . . . . . . . . . . . . . . . 19
class (πβ{(2nd
βπ₯)}) |
32 | | vm |
. . . . . . . . . . . . . . . . . . . 20
setvar π |
33 | 32 | cv 1540 |
. . . . . . . . . . . . . . . . . . 19
class π |
34 | 31, 33 | cfv 6543 |
. . . . . . . . . . . . . . . . . 18
class (πβ(πβ{(2nd βπ₯)})) |
35 | | vh |
. . . . . . . . . . . . . . . . . . . . 21
setvar β |
36 | 35 | cv 1540 |
. . . . . . . . . . . . . . . . . . . 20
class β |
37 | 36 | csn 4628 |
. . . . . . . . . . . . . . . . . . 19
class {β} |
38 | | vj |
. . . . . . . . . . . . . . . . . . . 20
setvar π |
39 | 38 | cv 1540 |
. . . . . . . . . . . . . . . . . . 19
class π |
40 | 37, 39 | cfv 6543 |
. . . . . . . . . . . . . . . . . 18
class (πβ{β}) |
41 | 34, 40 | wceq 1541 |
. . . . . . . . . . . . . . . . 17
wff (πβ(πβ{(2nd βπ₯)})) = (πβ{β}) |
42 | | c1st 7975 |
. . . . . . . . . . . . . . . . . . . . . . . 24
class
1st |
43 | 17, 42 | cfv 6543 |
. . . . . . . . . . . . . . . . . . . . . . 23
class
(1st βπ₯) |
44 | 43, 42 | cfv 6543 |
. . . . . . . . . . . . . . . . . . . . . 22
class
(1st β(1st βπ₯)) |
45 | | csg 18823 |
. . . . . . . . . . . . . . . . . . . . . . 23
class
-g |
46 | 21, 45 | cfv 6543 |
. . . . . . . . . . . . . . . . . . . . . 22
class
(-gβπ’) |
47 | 44, 19, 46 | co 7411 |
. . . . . . . . . . . . . . . . . . . . 21
class
((1st β(1st βπ₯))(-gβπ’)(2nd βπ₯)) |
48 | 47 | csn 4628 |
. . . . . . . . . . . . . . . . . . . 20
class
{((1st β(1st βπ₯))(-gβπ’)(2nd βπ₯))} |
49 | 48, 30 | cfv 6543 |
. . . . . . . . . . . . . . . . . . 19
class (πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))}) |
50 | 49, 33 | cfv 6543 |
. . . . . . . . . . . . . . . . . 18
class (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) |
51 | 43, 18 | cfv 6543 |
. . . . . . . . . . . . . . . . . . . . 21
class
(2nd β(1st βπ₯)) |
52 | 26, 45 | cfv 6543 |
. . . . . . . . . . . . . . . . . . . . 21
class
(-gβπ) |
53 | 51, 36, 52 | co 7411 |
. . . . . . . . . . . . . . . . . . . 20
class
((2nd β(1st βπ₯))(-gβπ)β) |
54 | 53 | csn 4628 |
. . . . . . . . . . . . . . . . . . 19
class
{((2nd β(1st βπ₯))(-gβπ)β)} |
55 | 54, 39 | cfv 6543 |
. . . . . . . . . . . . . . . . . 18
class (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}) |
56 | 50, 55 | wceq 1541 |
. . . . . . . . . . . . . . . . 17
wff (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}) |
57 | 41, 56 | wa 396 |
. . . . . . . . . . . . . . . 16
wff ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})) |
58 | 57, 35, 14 | crio 7366 |
. . . . . . . . . . . . . . 15
class
(β©β
β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))) |
59 | 24, 27, 58 | cif 4528 |
. . . . . . . . . . . . . 14
class
if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))) |
60 | 10, 16, 59 | cmpt 5231 |
. . . . . . . . . . . . 13
class (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) |
61 | 9, 60 | wcel 2106 |
. . . . . . . . . . . 12
wff π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) |
62 | 4 | cv 1540 |
. . . . . . . . . . . . 13
class π€ |
63 | | cmpd 40581 |
. . . . . . . . . . . . . 14
class
mapd |
64 | 5, 63 | cfv 6543 |
. . . . . . . . . . . . 13
class
(mapdβπ) |
65 | 62, 64 | cfv 6543 |
. . . . . . . . . . . 12
class
((mapdβπ)βπ€) |
66 | 61, 32, 65 | wsbc 3777 |
. . . . . . . . . . 11
wff
[((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) |
67 | | clspn 20587 |
. . . . . . . . . . . 12
class
LSpan |
68 | 26, 67 | cfv 6543 |
. . . . . . . . . . 11
class
(LSpanβπ) |
69 | 66, 38, 68 | wsbc 3777 |
. . . . . . . . . 10
wff
[(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) |
70 | | cbs 17146 |
. . . . . . . . . . 11
class
Base |
71 | 26, 70 | cfv 6543 |
. . . . . . . . . 10
class
(Baseβπ) |
72 | 69, 13, 71 | wsbc 3777 |
. . . . . . . . 9
wff
[(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) |
73 | | clcd 40543 |
. . . . . . . . . . 11
class
LCDual |
74 | 5, 73 | cfv 6543 |
. . . . . . . . . 10
class
(LCDualβπ) |
75 | 62, 74 | cfv 6543 |
. . . . . . . . 9
class
((LCDualβπ)βπ€) |
76 | 72, 25, 75 | wsbc 3777 |
. . . . . . . 8
wff
[((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) |
77 | 21, 67 | cfv 6543 |
. . . . . . . 8
class
(LSpanβπ’) |
78 | 76, 29, 77 | wsbc 3777 |
. . . . . . 7
wff
[(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) |
79 | 21, 70 | cfv 6543 |
. . . . . . 7
class
(Baseβπ’) |
80 | 78, 11, 79 | wsbc 3777 |
. . . . . 6
wff
[(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) |
81 | | cdvh 40035 |
. . . . . . . 8
class
DVecH |
82 | 5, 81 | cfv 6543 |
. . . . . . 7
class
(DVecHβπ) |
83 | 62, 82 | cfv 6543 |
. . . . . 6
class
((DVecHβπ)βπ€) |
84 | 80, 20, 83 | wsbc 3777 |
. . . . 5
wff
[((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) |
85 | 84, 8 | cab 2709 |
. . . 4
class {π β£
[((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))} |
86 | 4, 7, 85 | cmpt 5231 |
. . 3
class (π€ β (LHypβπ) β¦ {π β£ [((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))}) |
87 | 2, 3, 86 | cmpt 5231 |
. 2
class (π β V β¦ (π€ β (LHypβπ) β¦ {π β£ [((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})) |
88 | 1, 87 | wceq 1541 |
1
wff HDMap1 =
(π β V β¦ (π€ β (LHypβπ) β¦ {π β£ [((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})) |