Detailed syntax breakdown of Definition df-hdmap
| Step | Hyp | Ref
| Expression |
| 1 | | chdma 41794 |
. 2
class
HDMap |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vw |
. . . 4
setvar 𝑤 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑘 |
| 6 | | clh 39986 |
. . . . 5
class
LHyp |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(LHyp‘𝑘) |
| 8 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
| 9 | 8 | cv 1539 |
. . . . . . . . . 10
class 𝑎 |
| 10 | | vt |
. . . . . . . . . . 11
setvar 𝑡 |
| 11 | | vv |
. . . . . . . . . . . 12
setvar 𝑣 |
| 12 | 11 | cv 1539 |
. . . . . . . . . . 11
class 𝑣 |
| 13 | | vz |
. . . . . . . . . . . . . . . . 17
setvar 𝑧 |
| 14 | 13 | cv 1539 |
. . . . . . . . . . . . . . . 16
class 𝑧 |
| 15 | | ve |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑒 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . . . . . . . . . 19
class 𝑒 |
| 17 | 16 | csn 4626 |
. . . . . . . . . . . . . . . . . 18
class {𝑒} |
| 18 | | vu |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑢 |
| 19 | 18 | cv 1539 |
. . . . . . . . . . . . . . . . . . 19
class 𝑢 |
| 20 | | clspn 20969 |
. . . . . . . . . . . . . . . . . . 19
class
LSpan |
| 21 | 19, 20 | cfv 6561 |
. . . . . . . . . . . . . . . . . 18
class
(LSpan‘𝑢) |
| 22 | 17, 21 | cfv 6561 |
. . . . . . . . . . . . . . . . 17
class
((LSpan‘𝑢)‘{𝑒}) |
| 23 | 10 | cv 1539 |
. . . . . . . . . . . . . . . . . . 19
class 𝑡 |
| 24 | 23 | csn 4626 |
. . . . . . . . . . . . . . . . . 18
class {𝑡} |
| 25 | 24, 21 | cfv 6561 |
. . . . . . . . . . . . . . . . 17
class
((LSpan‘𝑢)‘{𝑡}) |
| 26 | 22, 25 | cun 3949 |
. . . . . . . . . . . . . . . 16
class
(((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) |
| 27 | 14, 26 | wcel 2108 |
. . . . . . . . . . . . . . 15
wff 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) |
| 28 | 27 | wn 3 |
. . . . . . . . . . . . . 14
wff ¬
𝑧 ∈
(((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) |
| 29 | | vy |
. . . . . . . . . . . . . . . 16
setvar 𝑦 |
| 30 | 29 | cv 1539 |
. . . . . . . . . . . . . . 15
class 𝑦 |
| 31 | 4 | cv 1539 |
. . . . . . . . . . . . . . . . . . . . 21
class 𝑤 |
| 32 | | chvm 41758 |
. . . . . . . . . . . . . . . . . . . . . 22
class
HVMap |
| 33 | 5, 32 | cfv 6561 |
. . . . . . . . . . . . . . . . . . . . 21
class
(HVMap‘𝑘) |
| 34 | 31, 33 | cfv 6561 |
. . . . . . . . . . . . . . . . . . . 20
class
((HVMap‘𝑘)‘𝑤) |
| 35 | 16, 34 | cfv 6561 |
. . . . . . . . . . . . . . . . . . 19
class
(((HVMap‘𝑘)‘𝑤)‘𝑒) |
| 36 | 16, 35, 14 | cotp 4634 |
. . . . . . . . . . . . . . . . . 18
class
〈𝑒,
(((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉 |
| 37 | | vi |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑖 |
| 38 | 37 | cv 1539 |
. . . . . . . . . . . . . . . . . 18
class 𝑖 |
| 39 | 36, 38 | cfv 6561 |
. . . . . . . . . . . . . . . . 17
class (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉) |
| 40 | 14, 39, 23 | cotp 4634 |
. . . . . . . . . . . . . . . 16
class
〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉 |
| 41 | 40, 38 | cfv 6561 |
. . . . . . . . . . . . . . 15
class (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉) |
| 42 | 30, 41 | wceq 1540 |
. . . . . . . . . . . . . 14
wff 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉) |
| 43 | 28, 42 | wi 4 |
. . . . . . . . . . . . 13
wff (¬
𝑧 ∈
(((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)) |
| 44 | 43, 13, 12 | wral 3061 |
. . . . . . . . . . . 12
wff
∀𝑧 ∈
𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)) |
| 45 | | clcd 41588 |
. . . . . . . . . . . . . . 15
class
LCDual |
| 46 | 5, 45 | cfv 6561 |
. . . . . . . . . . . . . 14
class
(LCDual‘𝑘) |
| 47 | 31, 46 | cfv 6561 |
. . . . . . . . . . . . 13
class
((LCDual‘𝑘)‘𝑤) |
| 48 | | cbs 17247 |
. . . . . . . . . . . . 13
class
Base |
| 49 | 47, 48 | cfv 6561 |
. . . . . . . . . . . 12
class
(Base‘((LCDual‘𝑘)‘𝑤)) |
| 50 | 44, 29, 49 | crio 7387 |
. . . . . . . . . . 11
class
(℩𝑦
∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))) |
| 51 | 10, 12, 50 | cmpt 5225 |
. . . . . . . . . 10
class (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
| 52 | 9, 51 | wcel 2108 |
. . . . . . . . 9
wff 𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
| 53 | | chdma1 41793 |
. . . . . . . . . . 11
class
HDMap1 |
| 54 | 5, 53 | cfv 6561 |
. . . . . . . . . 10
class
(HDMap1‘𝑘) |
| 55 | 31, 54 | cfv 6561 |
. . . . . . . . 9
class
((HDMap1‘𝑘)‘𝑤) |
| 56 | 52, 37, 55 | wsbc 3788 |
. . . . . . . 8
wff
[((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
| 57 | 19, 48 | cfv 6561 |
. . . . . . . 8
class
(Base‘𝑢) |
| 58 | 56, 11, 57 | wsbc 3788 |
. . . . . . 7
wff
[(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
| 59 | | cdvh 41080 |
. . . . . . . . 9
class
DVecH |
| 60 | 5, 59 | cfv 6561 |
. . . . . . . 8
class
(DVecH‘𝑘) |
| 61 | 31, 60 | cfv 6561 |
. . . . . . 7
class
((DVecH‘𝑘)‘𝑤) |
| 62 | 58, 18, 61 | wsbc 3788 |
. . . . . 6
wff
[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
| 63 | | cid 5577 |
. . . . . . . 8
class
I |
| 64 | 5, 48 | cfv 6561 |
. . . . . . . 8
class
(Base‘𝑘) |
| 65 | 63, 64 | cres 5687 |
. . . . . . 7
class ( I
↾ (Base‘𝑘)) |
| 66 | | cltrn 40103 |
. . . . . . . . . 10
class
LTrn |
| 67 | 5, 66 | cfv 6561 |
. . . . . . . . 9
class
(LTrn‘𝑘) |
| 68 | 31, 67 | cfv 6561 |
. . . . . . . 8
class
((LTrn‘𝑘)‘𝑤) |
| 69 | 63, 68 | cres 5687 |
. . . . . . 7
class ( I
↾ ((LTrn‘𝑘)‘𝑤)) |
| 70 | 65, 69 | cop 4632 |
. . . . . 6
class 〈( I
↾ (Base‘𝑘)), (
I ↾ ((LTrn‘𝑘)‘𝑤))〉 |
| 71 | 62, 15, 70 | wsbc 3788 |
. . . . 5
wff
[〈( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
| 72 | 71, 8 | cab 2714 |
. . . 4
class {𝑎 ∣ [〈( I
↾ (Base‘𝑘)), (
I ↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))} |
| 73 | 4, 7, 72 | cmpt 5225 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝑘)), ( I
↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))}) |
| 74 | 2, 3, 73 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝑘)), ( I
↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) |
| 75 | 1, 74 | wceq 1540 |
1
wff HDMap =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝑘)), ( I
↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) |