Step | Hyp | Ref
| Expression |
1 | | chdma 40651 |
. 2
class
HDMap |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar π€ |
5 | 2 | cv 1540 |
. . . . 5
class π |
6 | | clh 38843 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6540 |
. . . 4
class
(LHypβπ) |
8 | | va |
. . . . . . . . . . 11
setvar π |
9 | 8 | cv 1540 |
. . . . . . . . . 10
class π |
10 | | vt |
. . . . . . . . . . 11
setvar π‘ |
11 | | vv |
. . . . . . . . . . . 12
setvar π£ |
12 | 11 | cv 1540 |
. . . . . . . . . . 11
class π£ |
13 | | vz |
. . . . . . . . . . . . . . . . 17
setvar π§ |
14 | 13 | cv 1540 |
. . . . . . . . . . . . . . . 16
class π§ |
15 | | ve |
. . . . . . . . . . . . . . . . . . . 20
setvar π |
16 | 15 | cv 1540 |
. . . . . . . . . . . . . . . . . . 19
class π |
17 | 16 | csn 4627 |
. . . . . . . . . . . . . . . . . 18
class {π} |
18 | | vu |
. . . . . . . . . . . . . . . . . . . 20
setvar π’ |
19 | 18 | cv 1540 |
. . . . . . . . . . . . . . . . . . 19
class π’ |
20 | | clspn 20574 |
. . . . . . . . . . . . . . . . . . 19
class
LSpan |
21 | 19, 20 | cfv 6540 |
. . . . . . . . . . . . . . . . . 18
class
(LSpanβπ’) |
22 | 17, 21 | cfv 6540 |
. . . . . . . . . . . . . . . . 17
class
((LSpanβπ’)β{π}) |
23 | 10 | cv 1540 |
. . . . . . . . . . . . . . . . . . 19
class π‘ |
24 | 23 | csn 4627 |
. . . . . . . . . . . . . . . . . 18
class {π‘} |
25 | 24, 21 | cfv 6540 |
. . . . . . . . . . . . . . . . 17
class
((LSpanβπ’)β{π‘}) |
26 | 22, 25 | cun 3945 |
. . . . . . . . . . . . . . . 16
class
(((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) |
27 | 14, 26 | wcel 2106 |
. . . . . . . . . . . . . . 15
wff π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) |
28 | 27 | wn 3 |
. . . . . . . . . . . . . 14
wff Β¬
π§ β
(((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) |
29 | | vy |
. . . . . . . . . . . . . . . 16
setvar π¦ |
30 | 29 | cv 1540 |
. . . . . . . . . . . . . . 15
class π¦ |
31 | 4 | cv 1540 |
. . . . . . . . . . . . . . . . . . . . 21
class π€ |
32 | | chvm 40615 |
. . . . . . . . . . . . . . . . . . . . . 22
class
HVMap |
33 | 5, 32 | cfv 6540 |
. . . . . . . . . . . . . . . . . . . . 21
class
(HVMapβπ) |
34 | 31, 33 | cfv 6540 |
. . . . . . . . . . . . . . . . . . . 20
class
((HVMapβπ)βπ€) |
35 | 16, 34 | cfv 6540 |
. . . . . . . . . . . . . . . . . . 19
class
(((HVMapβπ)βπ€)βπ) |
36 | 16, 35, 14 | cotp 4635 |
. . . . . . . . . . . . . . . . . 18
class
β¨π,
(((HVMapβπ)βπ€)βπ), π§β© |
37 | | vi |
. . . . . . . . . . . . . . . . . . 19
setvar π |
38 | 37 | cv 1540 |
. . . . . . . . . . . . . . . . . 18
class π |
39 | 36, 38 | cfv 6540 |
. . . . . . . . . . . . . . . . 17
class (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©) |
40 | 14, 39, 23 | cotp 4635 |
. . . . . . . . . . . . . . . 16
class
β¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β© |
41 | 40, 38 | cfv 6540 |
. . . . . . . . . . . . . . 15
class (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©) |
42 | 30, 41 | wceq 1541 |
. . . . . . . . . . . . . 14
wff π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©) |
43 | 28, 42 | wi 4 |
. . . . . . . . . . . . 13
wff (Β¬
π§ β
(((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©)) |
44 | 43, 13, 12 | wral 3061 |
. . . . . . . . . . . 12
wff
βπ§ β
π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©)) |
45 | | clcd 40445 |
. . . . . . . . . . . . . . 15
class
LCDual |
46 | 5, 45 | cfv 6540 |
. . . . . . . . . . . . . 14
class
(LCDualβπ) |
47 | 31, 46 | cfv 6540 |
. . . . . . . . . . . . 13
class
((LCDualβπ)βπ€) |
48 | | cbs 17140 |
. . . . . . . . . . . . 13
class
Base |
49 | 47, 48 | cfv 6540 |
. . . . . . . . . . . 12
class
(Baseβ((LCDualβπ)βπ€)) |
50 | 44, 29, 49 | crio 7360 |
. . . . . . . . . . 11
class
(β©π¦
β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©))) |
51 | 10, 12, 50 | cmpt 5230 |
. . . . . . . . . 10
class (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©)))) |
52 | 9, 51 | wcel 2106 |
. . . . . . . . 9
wff π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©)))) |
53 | | chdma1 40650 |
. . . . . . . . . . 11
class
HDMap1 |
54 | 5, 53 | cfv 6540 |
. . . . . . . . . 10
class
(HDMap1βπ) |
55 | 31, 54 | cfv 6540 |
. . . . . . . . 9
class
((HDMap1βπ)βπ€) |
56 | 52, 37, 55 | wsbc 3776 |
. . . . . . . 8
wff
[((HDMap1βπ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©)))) |
57 | 19, 48 | cfv 6540 |
. . . . . . . 8
class
(Baseβπ’) |
58 | 56, 11, 57 | wsbc 3776 |
. . . . . . 7
wff
[(Baseβπ’) / π£][((HDMap1βπ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©)))) |
59 | | cdvh 39937 |
. . . . . . . . 9
class
DVecH |
60 | 5, 59 | cfv 6540 |
. . . . . . . 8
class
(DVecHβπ) |
61 | 31, 60 | cfv 6540 |
. . . . . . 7
class
((DVecHβπ)βπ€) |
62 | 58, 18, 61 | wsbc 3776 |
. . . . . 6
wff
[((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][((HDMap1βπ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©)))) |
63 | | cid 5572 |
. . . . . . . 8
class
I |
64 | 5, 48 | cfv 6540 |
. . . . . . . 8
class
(Baseβπ) |
65 | 63, 64 | cres 5677 |
. . . . . . 7
class ( I
βΎ (Baseβπ)) |
66 | | cltrn 38960 |
. . . . . . . . . 10
class
LTrn |
67 | 5, 66 | cfv 6540 |
. . . . . . . . 9
class
(LTrnβπ) |
68 | 31, 67 | cfv 6540 |
. . . . . . . 8
class
((LTrnβπ)βπ€) |
69 | 63, 68 | cres 5677 |
. . . . . . 7
class ( I
βΎ ((LTrnβπ)βπ€)) |
70 | 65, 69 | cop 4633 |
. . . . . 6
class β¨( I
βΎ (Baseβπ)), (
I βΎ ((LTrnβπ)βπ€))β© |
71 | 62, 15, 70 | wsbc 3776 |
. . . . 5
wff
[β¨( I βΎ (Baseβπ)), ( I βΎ ((LTrnβπ)βπ€))β© / π][((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][((HDMap1βπ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©)))) |
72 | 71, 8 | cab 2709 |
. . . 4
class {π β£ [β¨( I
βΎ (Baseβπ)), (
I βΎ ((LTrnβπ)βπ€))β© / π][((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][((HDMap1βπ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©))))} |
73 | 4, 7, 72 | cmpt 5230 |
. . 3
class (π€ β (LHypβπ) β¦ {π β£ [β¨( I βΎ
(Baseβπ)), ( I
βΎ ((LTrnβπ)βπ€))β© / π][((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][((HDMap1βπ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©))))}) |
74 | 2, 3, 73 | cmpt 5230 |
. 2
class (π β V β¦ (π€ β (LHypβπ) β¦ {π β£ [β¨( I βΎ
(Baseβπ)), ( I
βΎ ((LTrnβπ)βπ€))β© / π][((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][((HDMap1βπ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©))))})) |
75 | 1, 74 | wceq 1541 |
1
wff HDMap =
(π β V β¦ (π€ β (LHypβπ) β¦ {π β£ [β¨( I βΎ
(Baseβπ)), ( I
βΎ ((LTrnβπ)βπ€))β© / π][((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][((HDMap1βπ)βπ€) / π]π β (π‘ β π£ β¦ (β©π¦ β (Baseβ((LCDualβπ)βπ€))βπ§ β π£ (Β¬ π§ β (((LSpanβπ’)β{π}) βͺ ((LSpanβπ’)β{π‘})) β π¦ = (πββ¨π§, (πββ¨π, (((HVMapβπ)βπ€)βπ), π§β©), π‘β©))))})) |