Detailed syntax breakdown of Definition df-hdmap
Step | Hyp | Ref
| Expression |
1 | | chdma 39813 |
. 2
class
HDMap |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3433 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1538 |
. . . . 5
class 𝑘 |
6 | | clh 38005 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6437 |
. . . 4
class
(LHyp‘𝑘) |
8 | | va |
. . . . . . . . . . 11
setvar 𝑎 |
9 | 8 | cv 1538 |
. . . . . . . . . 10
class 𝑎 |
10 | | vt |
. . . . . . . . . . 11
setvar 𝑡 |
11 | | vv |
. . . . . . . . . . . 12
setvar 𝑣 |
12 | 11 | cv 1538 |
. . . . . . . . . . 11
class 𝑣 |
13 | | vz |
. . . . . . . . . . . . . . . . 17
setvar 𝑧 |
14 | 13 | cv 1538 |
. . . . . . . . . . . . . . . 16
class 𝑧 |
15 | | ve |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑒 |
16 | 15 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑒 |
17 | 16 | csn 4562 |
. . . . . . . . . . . . . . . . . 18
class {𝑒} |
18 | | vu |
. . . . . . . . . . . . . . . . . . . 20
setvar 𝑢 |
19 | 18 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑢 |
20 | | clspn 20242 |
. . . . . . . . . . . . . . . . . . 19
class
LSpan |
21 | 19, 20 | cfv 6437 |
. . . . . . . . . . . . . . . . . 18
class
(LSpan‘𝑢) |
22 | 17, 21 | cfv 6437 |
. . . . . . . . . . . . . . . . 17
class
((LSpan‘𝑢)‘{𝑒}) |
23 | 10 | cv 1538 |
. . . . . . . . . . . . . . . . . . 19
class 𝑡 |
24 | 23 | csn 4562 |
. . . . . . . . . . . . . . . . . 18
class {𝑡} |
25 | 24, 21 | cfv 6437 |
. . . . . . . . . . . . . . . . 17
class
((LSpan‘𝑢)‘{𝑡}) |
26 | 22, 25 | cun 3886 |
. . . . . . . . . . . . . . . 16
class
(((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) |
27 | 14, 26 | wcel 2107 |
. . . . . . . . . . . . . . 15
wff 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) |
28 | 27 | wn 3 |
. . . . . . . . . . . . . 14
wff ¬
𝑧 ∈
(((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) |
29 | | vy |
. . . . . . . . . . . . . . . 16
setvar 𝑦 |
30 | 29 | cv 1538 |
. . . . . . . . . . . . . . 15
class 𝑦 |
31 | 4 | cv 1538 |
. . . . . . . . . . . . . . . . . . . . 21
class 𝑤 |
32 | | chvm 39777 |
. . . . . . . . . . . . . . . . . . . . . 22
class
HVMap |
33 | 5, 32 | cfv 6437 |
. . . . . . . . . . . . . . . . . . . . 21
class
(HVMap‘𝑘) |
34 | 31, 33 | cfv 6437 |
. . . . . . . . . . . . . . . . . . . 20
class
((HVMap‘𝑘)‘𝑤) |
35 | 16, 34 | cfv 6437 |
. . . . . . . . . . . . . . . . . . 19
class
(((HVMap‘𝑘)‘𝑤)‘𝑒) |
36 | 16, 35, 14 | cotp 4570 |
. . . . . . . . . . . . . . . . . 18
class
〈𝑒,
(((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉 |
37 | | vi |
. . . . . . . . . . . . . . . . . . 19
setvar 𝑖 |
38 | 37 | cv 1538 |
. . . . . . . . . . . . . . . . . 18
class 𝑖 |
39 | 36, 38 | cfv 6437 |
. . . . . . . . . . . . . . . . 17
class (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉) |
40 | 14, 39, 23 | cotp 4570 |
. . . . . . . . . . . . . . . 16
class
〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉 |
41 | 40, 38 | cfv 6437 |
. . . . . . . . . . . . . . 15
class (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉) |
42 | 30, 41 | wceq 1539 |
. . . . . . . . . . . . . 14
wff 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉) |
43 | 28, 42 | wi 4 |
. . . . . . . . . . . . 13
wff (¬
𝑧 ∈
(((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)) |
44 | 43, 13, 12 | wral 3065 |
. . . . . . . . . . . 12
wff
∀𝑧 ∈
𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)) |
45 | | clcd 39607 |
. . . . . . . . . . . . . . 15
class
LCDual |
46 | 5, 45 | cfv 6437 |
. . . . . . . . . . . . . 14
class
(LCDual‘𝑘) |
47 | 31, 46 | cfv 6437 |
. . . . . . . . . . . . 13
class
((LCDual‘𝑘)‘𝑤) |
48 | | cbs 16921 |
. . . . . . . . . . . . 13
class
Base |
49 | 47, 48 | cfv 6437 |
. . . . . . . . . . . 12
class
(Base‘((LCDual‘𝑘)‘𝑤)) |
50 | 44, 29, 49 | crio 7240 |
. . . . . . . . . . 11
class
(℩𝑦
∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))) |
51 | 10, 12, 50 | cmpt 5158 |
. . . . . . . . . 10
class (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
52 | 9, 51 | wcel 2107 |
. . . . . . . . 9
wff 𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
53 | | chdma1 39812 |
. . . . . . . . . . 11
class
HDMap1 |
54 | 5, 53 | cfv 6437 |
. . . . . . . . . 10
class
(HDMap1‘𝑘) |
55 | 31, 54 | cfv 6437 |
. . . . . . . . 9
class
((HDMap1‘𝑘)‘𝑤) |
56 | 52, 37, 55 | wsbc 3717 |
. . . . . . . 8
wff
[((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
57 | 19, 48 | cfv 6437 |
. . . . . . . 8
class
(Base‘𝑢) |
58 | 56, 11, 57 | wsbc 3717 |
. . . . . . 7
wff
[(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
59 | | cdvh 39099 |
. . . . . . . . 9
class
DVecH |
60 | 5, 59 | cfv 6437 |
. . . . . . . 8
class
(DVecH‘𝑘) |
61 | 31, 60 | cfv 6437 |
. . . . . . 7
class
((DVecH‘𝑘)‘𝑤) |
62 | 58, 18, 61 | wsbc 3717 |
. . . . . 6
wff
[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
63 | | cid 5489 |
. . . . . . . 8
class
I |
64 | 5, 48 | cfv 6437 |
. . . . . . . 8
class
(Base‘𝑘) |
65 | 63, 64 | cres 5592 |
. . . . . . 7
class ( I
↾ (Base‘𝑘)) |
66 | | cltrn 38122 |
. . . . . . . . . 10
class
LTrn |
67 | 5, 66 | cfv 6437 |
. . . . . . . . 9
class
(LTrn‘𝑘) |
68 | 31, 67 | cfv 6437 |
. . . . . . . 8
class
((LTrn‘𝑘)‘𝑤) |
69 | 63, 68 | cres 5592 |
. . . . . . 7
class ( I
↾ ((LTrn‘𝑘)‘𝑤)) |
70 | 65, 69 | cop 4568 |
. . . . . 6
class 〈( I
↾ (Base‘𝑘)), (
I ↾ ((LTrn‘𝑘)‘𝑤))〉 |
71 | 62, 15, 70 | wsbc 3717 |
. . . . 5
wff
[〈( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉)))) |
72 | 71, 8 | cab 2716 |
. . . 4
class {𝑎 ∣ [〈( I
↾ (Base‘𝑘)), (
I ↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))} |
73 | 4, 7, 72 | cmpt 5158 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝑘)), ( I
↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))}) |
74 | 2, 3, 73 | cmpt 5158 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝑘)), ( I
↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) |
75 | 1, 74 | wceq 1539 |
1
wff HDMap =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝑘)), ( I
↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) |