| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hdmap1fval.k | . 2
⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | hdmap1fval.i | . . . 4
⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | 
| 3 |  | hdmap1val.h | . . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) | 
| 4 | 3 | hdmap1ffval 41797 | . . . . 5
⊢ (𝐾 ∈ 𝐴 → (HDMap1‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})) | 
| 5 | 4 | fveq1d 6908 | . . . 4
⊢ (𝐾 ∈ 𝐴 → ((HDMap1‘𝐾)‘𝑊) = ((𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})‘𝑊)) | 
| 6 | 2, 5 | eqtrid 2789 | . . 3
⊢ (𝐾 ∈ 𝐴 → 𝐼 = ((𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})‘𝑊)) | 
| 7 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊)) | 
| 8 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ((LCDual‘𝐾)‘𝑤) = ((LCDual‘𝐾)‘𝑊)) | 
| 9 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑊 → ((mapd‘𝐾)‘𝑤) = ((mapd‘𝐾)‘𝑊)) | 
| 10 | 9 | sbceq1d 3793 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑊 → ([((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ [((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))))) | 
| 11 | 10 | sbcbidv 3845 | . . . . . . . . . . 11
⊢ (𝑤 = 𝑊 → ([(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ [(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))))) | 
| 12 | 11 | sbcbidv 3845 | . . . . . . . . . 10
⊢ (𝑤 = 𝑊 → ([(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ [(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))))) | 
| 13 | 8, 12 | sbceqbid 3795 | . . . . . . . . 9
⊢ (𝑤 = 𝑊 → ([((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ [((LCDual‘𝐾)‘𝑊) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))))) | 
| 14 | 13 | sbcbidv 3845 | . . . . . . . 8
⊢ (𝑤 = 𝑊 → ([(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ [(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑊) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))))) | 
| 15 | 14 | sbcbidv 3845 | . . . . . . 7
⊢ (𝑤 = 𝑊 → ([(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ [(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑊) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))))) | 
| 16 | 7, 15 | sbceqbid 3795 | . . . . . 6
⊢ (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ [((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑊) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))))) | 
| 17 |  | fvex 6919 | . . . . . . 7
⊢
((DVecH‘𝐾)‘𝑊) ∈ V | 
| 18 |  | fvex 6919 | . . . . . . 7
⊢
(Base‘𝑢)
∈ V | 
| 19 |  | fvex 6919 | . . . . . . 7
⊢
(LSpan‘𝑢)
∈ V | 
| 20 |  | hdmap1fval.u | . . . . . . . . . . 11
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| 21 | 20 | eqeq2i 2750 | . . . . . . . . . 10
⊢ (𝑢 = 𝑈 ↔ 𝑢 = ((DVecH‘𝐾)‘𝑊)) | 
| 22 | 21 | biimpri 228 | . . . . . . . . 9
⊢ (𝑢 = ((DVecH‘𝐾)‘𝑊) → 𝑢 = 𝑈) | 
| 23 | 22 | 3ad2ant1 1134 | . . . . . . . 8
⊢ ((𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢) ∧ 𝑛 = (LSpan‘𝑢)) → 𝑢 = 𝑈) | 
| 24 |  | simp2 1138 | . . . . . . . . . 10
⊢ ((𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢) ∧ 𝑛 = (LSpan‘𝑢)) → 𝑣 = (Base‘𝑢)) | 
| 25 | 22 | fveq2d 6910 | . . . . . . . . . . 11
⊢ (𝑢 = ((DVecH‘𝐾)‘𝑊) → (Base‘𝑢) = (Base‘𝑈)) | 
| 26 | 25 | 3ad2ant1 1134 | . . . . . . . . . 10
⊢ ((𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢) ∧ 𝑛 = (LSpan‘𝑢)) → (Base‘𝑢) = (Base‘𝑈)) | 
| 27 | 24, 26 | eqtrd 2777 | . . . . . . . . 9
⊢ ((𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢) ∧ 𝑛 = (LSpan‘𝑢)) → 𝑣 = (Base‘𝑈)) | 
| 28 |  | hdmap1fval.v | . . . . . . . . 9
⊢ 𝑉 = (Base‘𝑈) | 
| 29 | 27, 28 | eqtr4di 2795 | . . . . . . . 8
⊢ ((𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢) ∧ 𝑛 = (LSpan‘𝑢)) → 𝑣 = 𝑉) | 
| 30 |  | simp3 1139 | . . . . . . . . . 10
⊢ ((𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢) ∧ 𝑛 = (LSpan‘𝑢)) → 𝑛 = (LSpan‘𝑢)) | 
| 31 | 23 | fveq2d 6910 | . . . . . . . . . 10
⊢ ((𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢) ∧ 𝑛 = (LSpan‘𝑢)) → (LSpan‘𝑢) = (LSpan‘𝑈)) | 
| 32 | 30, 31 | eqtrd 2777 | . . . . . . . . 9
⊢ ((𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢) ∧ 𝑛 = (LSpan‘𝑢)) → 𝑛 = (LSpan‘𝑈)) | 
| 33 |  | hdmap1fval.n | . . . . . . . . 9
⊢ 𝑁 = (LSpan‘𝑈) | 
| 34 | 32, 33 | eqtr4di 2795 | . . . . . . . 8
⊢ ((𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢) ∧ 𝑛 = (LSpan‘𝑢)) → 𝑛 = 𝑁) | 
| 35 |  | fvex 6919 | . . . . . . . . . 10
⊢
((LCDual‘𝐾)‘𝑊) ∈ V | 
| 36 |  | fvex 6919 | . . . . . . . . . 10
⊢
(Base‘𝑐)
∈ V | 
| 37 |  | fvex 6919 | . . . . . . . . . 10
⊢
(LSpan‘𝑐)
∈ V | 
| 38 |  | id 22 | . . . . . . . . . . . . 13
⊢ (𝑐 = ((LCDual‘𝐾)‘𝑊) → 𝑐 = ((LCDual‘𝐾)‘𝑊)) | 
| 39 |  | hdmap1fval.c | . . . . . . . . . . . . 13
⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | 
| 40 | 38, 39 | eqtr4di 2795 | . . . . . . . . . . . 12
⊢ (𝑐 = ((LCDual‘𝐾)‘𝑊) → 𝑐 = 𝐶) | 
| 41 | 40 | 3ad2ant1 1134 | . . . . . . . . . . 11
⊢ ((𝑐 = ((LCDual‘𝐾)‘𝑊) ∧ 𝑑 = (Base‘𝑐) ∧ 𝑗 = (LSpan‘𝑐)) → 𝑐 = 𝐶) | 
| 42 |  | simp2 1138 | . . . . . . . . . . . 12
⊢ ((𝑐 = ((LCDual‘𝐾)‘𝑊) ∧ 𝑑 = (Base‘𝑐) ∧ 𝑗 = (LSpan‘𝑐)) → 𝑑 = (Base‘𝑐)) | 
| 43 | 41 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ ((𝑐 = ((LCDual‘𝐾)‘𝑊) ∧ 𝑑 = (Base‘𝑐) ∧ 𝑗 = (LSpan‘𝑐)) → (Base‘𝑐) = (Base‘𝐶)) | 
| 44 |  | hdmap1fval.d | . . . . . . . . . . . . 13
⊢ 𝐷 = (Base‘𝐶) | 
| 45 | 43, 44 | eqtr4di 2795 | . . . . . . . . . . . 12
⊢ ((𝑐 = ((LCDual‘𝐾)‘𝑊) ∧ 𝑑 = (Base‘𝑐) ∧ 𝑗 = (LSpan‘𝑐)) → (Base‘𝑐) = 𝐷) | 
| 46 | 42, 45 | eqtrd 2777 | . . . . . . . . . . 11
⊢ ((𝑐 = ((LCDual‘𝐾)‘𝑊) ∧ 𝑑 = (Base‘𝑐) ∧ 𝑗 = (LSpan‘𝑐)) → 𝑑 = 𝐷) | 
| 47 |  | simp3 1139 | . . . . . . . . . . . 12
⊢ ((𝑐 = ((LCDual‘𝐾)‘𝑊) ∧ 𝑑 = (Base‘𝑐) ∧ 𝑗 = (LSpan‘𝑐)) → 𝑗 = (LSpan‘𝑐)) | 
| 48 | 41 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ ((𝑐 = ((LCDual‘𝐾)‘𝑊) ∧ 𝑑 = (Base‘𝑐) ∧ 𝑗 = (LSpan‘𝑐)) → (LSpan‘𝑐) = (LSpan‘𝐶)) | 
| 49 |  | hdmap1fval.j | . . . . . . . . . . . . 13
⊢ 𝐽 = (LSpan‘𝐶) | 
| 50 | 48, 49 | eqtr4di 2795 | . . . . . . . . . . . 12
⊢ ((𝑐 = ((LCDual‘𝐾)‘𝑊) ∧ 𝑑 = (Base‘𝑐) ∧ 𝑗 = (LSpan‘𝑐)) → (LSpan‘𝑐) = 𝐽) | 
| 51 | 47, 50 | eqtrd 2777 | . . . . . . . . . . 11
⊢ ((𝑐 = ((LCDual‘𝐾)‘𝑊) ∧ 𝑑 = (Base‘𝑐) ∧ 𝑗 = (LSpan‘𝑐)) → 𝑗 = 𝐽) | 
| 52 |  | fvex 6919 | . . . . . . . . . . . . 13
⊢
((mapd‘𝐾)‘𝑊) ∈ V | 
| 53 |  | id 22 | . . . . . . . . . . . . . . 15
⊢ (𝑚 = ((mapd‘𝐾)‘𝑊) → 𝑚 = ((mapd‘𝐾)‘𝑊)) | 
| 54 |  | hdmap1fval.m | . . . . . . . . . . . . . . 15
⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | 
| 55 | 53, 54 | eqtr4di 2795 | . . . . . . . . . . . . . 14
⊢ (𝑚 = ((mapd‘𝐾)‘𝑊) → 𝑚 = 𝑀) | 
| 56 |  | fveq1 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑀 → (𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑀‘(𝑛‘{(2nd ‘𝑥)}))) | 
| 57 | 56 | eqeq1d 2739 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑀 → ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ↔ (𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}))) | 
| 58 |  | fveq1 6905 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 = 𝑀 → (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))}))) | 
| 59 | 58 | eqeq1d 2739 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 = 𝑀 → ((𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}) ↔ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))) | 
| 60 | 57, 59 | anbi12d 632 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑀 → (((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})) ↔ ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))) | 
| 61 | 60 | riotabidv 7390 | . . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑀 → (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))) = (℩ℎ ∈ 𝑑 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))) | 
| 62 | 61 | ifeq2d 4546 | . . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑀 → if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))) = if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) | 
| 63 | 62 | mpteq2dv 5244 | . . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑀 → (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) = (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))) | 
| 64 | 63 | eleq2d 2827 | . . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑀 → (𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))))) | 
| 65 | 55, 64 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝑚 = ((mapd‘𝐾)‘𝑊) → (𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))))) | 
| 66 | 52, 65 | sbcie 3830 | . . . . . . . . . . . 12
⊢
([((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))) | 
| 67 |  | simp2 1138 | . . . . . . . . . . . . . . 15
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → 𝑑 = 𝐷) | 
| 68 |  | xpeq2 5706 | . . . . . . . . . . . . . . . 16
⊢ (𝑑 = 𝐷 → (𝑣 × 𝑑) = (𝑣 × 𝐷)) | 
| 69 | 68 | xpeq1d 5714 | . . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝐷 → ((𝑣 × 𝑑) × 𝑣) = ((𝑣 × 𝐷) × 𝑣)) | 
| 70 | 67, 69 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → ((𝑣 × 𝑑) × 𝑣) = ((𝑣 × 𝐷) × 𝑣)) | 
| 71 |  | simp1 1137 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → 𝑐 = 𝐶) | 
| 72 | 71 | fveq2d 6910 | . . . . . . . . . . . . . . . 16
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → (0g‘𝑐) = (0g‘𝐶)) | 
| 73 |  | hdmap1fval.q | . . . . . . . . . . . . . . . 16
⊢ 𝑄 = (0g‘𝐶) | 
| 74 | 72, 73 | eqtr4di 2795 | . . . . . . . . . . . . . . 15
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → (0g‘𝑐) = 𝑄) | 
| 75 |  | simp3 1139 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → 𝑗 = 𝐽) | 
| 76 | 75 | fveq1d 6908 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → (𝑗‘{ℎ}) = (𝐽‘{ℎ})) | 
| 77 | 76 | eqeq2d 2748 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ↔ (𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}))) | 
| 78 | 71 | fveq2d 6910 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → (-g‘𝑐) = (-g‘𝐶)) | 
| 79 |  | hdmap1fval.r | . . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑅 = (-g‘𝐶) | 
| 80 | 78, 79 | eqtr4di 2795 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → (-g‘𝑐) = 𝑅) | 
| 81 | 80 | oveqd 7448 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → ((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ) = ((2nd ‘(1st
‘𝑥))𝑅ℎ)) | 
| 82 | 81 | sneqd 4638 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → {((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)} = {((2nd ‘(1st
‘𝑥))𝑅ℎ)}) | 
| 83 | 75, 82 | fveq12d 6913 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})) | 
| 84 | 83 | eqeq2d 2748 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → ((𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}) ↔ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))) | 
| 85 | 77, 84 | anbi12d 632 | . . . . . . . . . . . . . . . 16
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → (((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})) ↔ ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))) | 
| 86 | 67, 85 | riotaeqbidv 7391 | . . . . . . . . . . . . . . 15
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → (℩ℎ ∈ 𝑑 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))) | 
| 87 | 74, 86 | ifeq12d 4547 | . . . . . . . . . . . . . 14
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))) = if((2nd ‘𝑥) = (0g‘𝑢), 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))) | 
| 88 | 70, 87 | mpteq12dv 5233 | . . . . . . . . . . . . 13
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) = (𝑥 ∈ ((𝑣 × 𝐷) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))))) | 
| 89 | 88 | eleq2d 2827 | . . . . . . . . . . . 12
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → (𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝐷) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))))) | 
| 90 | 66, 89 | bitrid 283 | . . . . . . . . . . 11
⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷 ∧ 𝑗 = 𝐽) → ([((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝐷) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))))) | 
| 91 | 41, 46, 51, 90 | syl3anc 1373 | . . . . . . . . . 10
⊢ ((𝑐 = ((LCDual‘𝐾)‘𝑊) ∧ 𝑑 = (Base‘𝑐) ∧ 𝑗 = (LSpan‘𝑐)) → ([((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝐷) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))))) | 
| 92 | 35, 36, 37, 91 | sbc3ie 3868 | . . . . . . . . 9
⊢
([((LCDual‘𝐾)‘𝑊) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝐷) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))))) | 
| 93 |  | simp2 1138 | . . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → 𝑣 = 𝑉) | 
| 94 | 93 | xpeq1d 5714 | . . . . . . . . . . . 12
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (𝑣 × 𝐷) = (𝑉 × 𝐷)) | 
| 95 | 94, 93 | xpeq12d 5716 | . . . . . . . . . . 11
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → ((𝑣 × 𝐷) × 𝑣) = ((𝑉 × 𝐷) × 𝑉)) | 
| 96 |  | simp1 1137 | . . . . . . . . . . . . . . 15
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → 𝑢 = 𝑈) | 
| 97 | 96 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (0g‘𝑢) = (0g‘𝑈)) | 
| 98 |  | hdmap1fval.o | . . . . . . . . . . . . . 14
⊢  0 =
(0g‘𝑈) | 
| 99 | 97, 98 | eqtr4di 2795 | . . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (0g‘𝑢) = 0 ) | 
| 100 | 99 | eqeq2d 2748 | . . . . . . . . . . . 12
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → ((2nd ‘𝑥) = (0g‘𝑢) ↔ (2nd
‘𝑥) = 0
)) | 
| 101 |  | simp3 1139 | . . . . . . . . . . . . . . . 16
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) | 
| 102 | 101 | fveq1d 6908 | . . . . . . . . . . . . . . 15
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (𝑛‘{(2nd ‘𝑥)}) = (𝑁‘{(2nd ‘𝑥)})) | 
| 103 | 102 | fveqeq2d 6914 | . . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ↔ (𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}))) | 
| 104 | 96 | fveq2d 6910 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (-g‘𝑢) = (-g‘𝑈)) | 
| 105 |  | hdmap1fval.s | . . . . . . . . . . . . . . . . . . 19
⊢  − =
(-g‘𝑈) | 
| 106 | 104, 105 | eqtr4di 2795 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (-g‘𝑢) = − ) | 
| 107 | 106 | oveqd 7448 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → ((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥)) = ((1st ‘(1st
‘𝑥)) −
(2nd ‘𝑥))) | 
| 108 | 107 | sneqd 4638 | . . . . . . . . . . . . . . . 16
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → {((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))} = {((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))}) | 
| 109 | 101, 108 | fveq12d 6913 | . . . . . . . . . . . . . . 15
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))}) = (𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) | 
| 110 | 109 | fveqeq2d 6914 | . . . . . . . . . . . . . 14
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → ((𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}) ↔ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))) | 
| 111 | 103, 110 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})) ↔ ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))) | 
| 112 | 111 | riotabidv 7390 | . . . . . . . . . . . 12
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))) | 
| 113 | 100, 112 | ifbieq2d 4552 | . . . . . . . . . . 11
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → if((2nd ‘𝑥) = (0g‘𝑢), 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))) = if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))) | 
| 114 | 95, 113 | mpteq12dv 5233 | . . . . . . . . . 10
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (𝑥 ∈ ((𝑣 × 𝐷) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))) = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))))) | 
| 115 | 114 | eleq2d 2827 | . . . . . . . . 9
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → (𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝐷) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑛‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))))) | 
| 116 | 92, 115 | bitrid 283 | . . . . . . . 8
⊢ ((𝑢 = 𝑈 ∧ 𝑣 = 𝑉 ∧ 𝑛 = 𝑁) → ([((LCDual‘𝐾)‘𝑊) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))))) | 
| 117 | 23, 29, 34, 116 | syl3anc 1373 | . . . . . . 7
⊢ ((𝑢 = ((DVecH‘𝐾)‘𝑊) ∧ 𝑣 = (Base‘𝑢) ∧ 𝑛 = (LSpan‘𝑢)) → ([((LCDual‘𝐾)‘𝑊) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))))) | 
| 118 | 17, 18, 19, 117 | sbc3ie 3868 | . . . . . 6
⊢
([((DVecH‘𝐾)‘𝑊) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑊) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑊) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))))) | 
| 119 | 16, 118 | bitrdi 287 | . . . . 5
⊢ (𝑤 = 𝑊 → ([((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)}))))) ↔ 𝑎 ∈ (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))))) | 
| 120 | 119 | eqabcdv 2876 | . . . 4
⊢ (𝑤 = 𝑊 → {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))} = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))))) | 
| 121 |  | eqid 2737 | . . . 4
⊢ (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))}) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))}) | 
| 122 | 28 | fvexi 6920 | . . . . . . 7
⊢ 𝑉 ∈ V | 
| 123 | 44 | fvexi 6920 | . . . . . . 7
⊢ 𝐷 ∈ V | 
| 124 | 122, 123 | xpex 7773 | . . . . . 6
⊢ (𝑉 × 𝐷) ∈ V | 
| 125 | 124, 122 | xpex 7773 | . . . . 5
⊢ ((𝑉 × 𝐷) × 𝑉) ∈ V | 
| 126 | 125 | mptex 7243 | . . . 4
⊢ (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)}))))) ∈ V | 
| 127 | 120, 121,
126 | fvmpt 7016 | . . 3
⊢ (𝑊 ∈ 𝐻 → ((𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝐾)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})‘𝑊) = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))))) | 
| 128 | 6, 127 | sylan9eq 2797 | . 2
⊢ ((𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻) → 𝐼 = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))))) | 
| 129 | 1, 128 | syl 17 | 1
⊢ (𝜑 → 𝐼 = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st
‘(1st ‘𝑥)) − (2nd
‘𝑥))})) = (𝐽‘{((2nd
‘(1st ‘𝑥))𝑅ℎ)})))))) |