Step | Hyp | Ref
| Expression |
1 | | hdmap1fval.k |
. 2
β’ (π β (πΎ β π΄ β§ π β π»)) |
2 | | hdmap1fval.i |
. . . 4
β’ πΌ = ((HDMap1βπΎ)βπ) |
3 | | hdmap1val.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
4 | 3 | hdmap1ffval 40661 |
. . . . 5
β’ (πΎ β π΄ β (HDMap1βπΎ) = (π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})) |
5 | 4 | fveq1d 6893 |
. . . 4
β’ (πΎ β π΄ β ((HDMap1βπΎ)βπ) = ((π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})βπ)) |
6 | 2, 5 | eqtrid 2784 |
. . 3
β’ (πΎ β π΄ β πΌ = ((π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})βπ)) |
7 | | fveq2 6891 |
. . . . . . 7
β’ (π€ = π β ((DVecHβπΎ)βπ€) = ((DVecHβπΎ)βπ)) |
8 | | fveq2 6891 |
. . . . . . . . . 10
β’ (π€ = π β ((LCDualβπΎ)βπ€) = ((LCDualβπΎ)βπ)) |
9 | | fveq2 6891 |
. . . . . . . . . . . . 13
β’ (π€ = π β ((mapdβπΎ)βπ€) = ((mapdβπΎ)βπ)) |
10 | 9 | sbceq1d 3782 |
. . . . . . . . . . . 12
β’ (π€ = π β ([((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
11 | 10 | sbcbidv 3836 |
. . . . . . . . . . 11
β’ (π€ = π β ([(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [(LSpanβπ) / π][((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
12 | 11 | sbcbidv 3836 |
. . . . . . . . . 10
β’ (π€ = π β ([(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
13 | 8, 12 | sbceqbid 3784 |
. . . . . . . . 9
β’ (π€ = π β ([((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [((LCDualβπΎ)βπ) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
14 | 13 | sbcbidv 3836 |
. . . . . . . 8
β’ (π€ = π β ([(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [(LSpanβπ’) / π][((LCDualβπΎ)βπ) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
15 | 14 | sbcbidv 3836 |
. . . . . . 7
β’ (π€ = π β ([(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
16 | 7, 15 | sbceqbid 3784 |
. . . . . 6
β’ (π€ = π β ([((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [((DVecHβπΎ)βπ) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
17 | | fvex 6904 |
. . . . . . 7
β’
((DVecHβπΎ)βπ) β V |
18 | | fvex 6904 |
. . . . . . 7
β’
(Baseβπ’)
β V |
19 | | fvex 6904 |
. . . . . . 7
β’
(LSpanβπ’)
β V |
20 | | hdmap1fval.u |
. . . . . . . . . . 11
β’ π = ((DVecHβπΎ)βπ) |
21 | 20 | eqeq2i 2745 |
. . . . . . . . . 10
β’ (π’ = π β π’ = ((DVecHβπΎ)βπ)) |
22 | 21 | biimpri 227 |
. . . . . . . . 9
β’ (π’ = ((DVecHβπΎ)βπ) β π’ = π) |
23 | 22 | 3ad2ant1 1133 |
. . . . . . . 8
β’ ((π’ = ((DVecHβπΎ)βπ) β§ π£ = (Baseβπ’) β§ π = (LSpanβπ’)) β π’ = π) |
24 | | simp2 1137 |
. . . . . . . . . 10
β’ ((π’ = ((DVecHβπΎ)βπ) β§ π£ = (Baseβπ’) β§ π = (LSpanβπ’)) β π£ = (Baseβπ’)) |
25 | 22 | fveq2d 6895 |
. . . . . . . . . . 11
β’ (π’ = ((DVecHβπΎ)βπ) β (Baseβπ’) = (Baseβπ)) |
26 | 25 | 3ad2ant1 1133 |
. . . . . . . . . 10
β’ ((π’ = ((DVecHβπΎ)βπ) β§ π£ = (Baseβπ’) β§ π = (LSpanβπ’)) β (Baseβπ’) = (Baseβπ)) |
27 | 24, 26 | eqtrd 2772 |
. . . . . . . . 9
β’ ((π’ = ((DVecHβπΎ)βπ) β§ π£ = (Baseβπ’) β§ π = (LSpanβπ’)) β π£ = (Baseβπ)) |
28 | | hdmap1fval.v |
. . . . . . . . 9
β’ π = (Baseβπ) |
29 | 27, 28 | eqtr4di 2790 |
. . . . . . . 8
β’ ((π’ = ((DVecHβπΎ)βπ) β§ π£ = (Baseβπ’) β§ π = (LSpanβπ’)) β π£ = π) |
30 | | simp3 1138 |
. . . . . . . . . 10
β’ ((π’ = ((DVecHβπΎ)βπ) β§ π£ = (Baseβπ’) β§ π = (LSpanβπ’)) β π = (LSpanβπ’)) |
31 | 23 | fveq2d 6895 |
. . . . . . . . . 10
β’ ((π’ = ((DVecHβπΎ)βπ) β§ π£ = (Baseβπ’) β§ π = (LSpanβπ’)) β (LSpanβπ’) = (LSpanβπ)) |
32 | 30, 31 | eqtrd 2772 |
. . . . . . . . 9
β’ ((π’ = ((DVecHβπΎ)βπ) β§ π£ = (Baseβπ’) β§ π = (LSpanβπ’)) β π = (LSpanβπ)) |
33 | | hdmap1fval.n |
. . . . . . . . 9
β’ π = (LSpanβπ) |
34 | 32, 33 | eqtr4di 2790 |
. . . . . . . 8
β’ ((π’ = ((DVecHβπΎ)βπ) β§ π£ = (Baseβπ’) β§ π = (LSpanβπ’)) β π = π) |
35 | | fvex 6904 |
. . . . . . . . . 10
β’
((LCDualβπΎ)βπ) β V |
36 | | fvex 6904 |
. . . . . . . . . 10
β’
(Baseβπ)
β V |
37 | | fvex 6904 |
. . . . . . . . . 10
β’
(LSpanβπ)
β V |
38 | | id 22 |
. . . . . . . . . . . . 13
β’ (π = ((LCDualβπΎ)βπ) β π = ((LCDualβπΎ)βπ)) |
39 | | hdmap1fval.c |
. . . . . . . . . . . . 13
β’ πΆ = ((LCDualβπΎ)βπ) |
40 | 38, 39 | eqtr4di 2790 |
. . . . . . . . . . . 12
β’ (π = ((LCDualβπΎ)βπ) β π = πΆ) |
41 | 40 | 3ad2ant1 1133 |
. . . . . . . . . . 11
β’ ((π = ((LCDualβπΎ)βπ) β§ π = (Baseβπ) β§ π = (LSpanβπ)) β π = πΆ) |
42 | | simp2 1137 |
. . . . . . . . . . . 12
β’ ((π = ((LCDualβπΎ)βπ) β§ π = (Baseβπ) β§ π = (LSpanβπ)) β π = (Baseβπ)) |
43 | 41 | fveq2d 6895 |
. . . . . . . . . . . . 13
β’ ((π = ((LCDualβπΎ)βπ) β§ π = (Baseβπ) β§ π = (LSpanβπ)) β (Baseβπ) = (BaseβπΆ)) |
44 | | hdmap1fval.d |
. . . . . . . . . . . . 13
β’ π· = (BaseβπΆ) |
45 | 43, 44 | eqtr4di 2790 |
. . . . . . . . . . . 12
β’ ((π = ((LCDualβπΎ)βπ) β§ π = (Baseβπ) β§ π = (LSpanβπ)) β (Baseβπ) = π·) |
46 | 42, 45 | eqtrd 2772 |
. . . . . . . . . . 11
β’ ((π = ((LCDualβπΎ)βπ) β§ π = (Baseβπ) β§ π = (LSpanβπ)) β π = π·) |
47 | | simp3 1138 |
. . . . . . . . . . . 12
β’ ((π = ((LCDualβπΎ)βπ) β§ π = (Baseβπ) β§ π = (LSpanβπ)) β π = (LSpanβπ)) |
48 | 41 | fveq2d 6895 |
. . . . . . . . . . . . 13
β’ ((π = ((LCDualβπΎ)βπ) β§ π = (Baseβπ) β§ π = (LSpanβπ)) β (LSpanβπ) = (LSpanβπΆ)) |
49 | | hdmap1fval.j |
. . . . . . . . . . . . 13
β’ π½ = (LSpanβπΆ) |
50 | 48, 49 | eqtr4di 2790 |
. . . . . . . . . . . 12
β’ ((π = ((LCDualβπΎ)βπ) β§ π = (Baseβπ) β§ π = (LSpanβπ)) β (LSpanβπ) = π½) |
51 | 47, 50 | eqtrd 2772 |
. . . . . . . . . . 11
β’ ((π = ((LCDualβπΎ)βπ) β§ π = (Baseβπ) β§ π = (LSpanβπ)) β π = π½) |
52 | | fvex 6904 |
. . . . . . . . . . . . 13
β’
((mapdβπΎ)βπ) β V |
53 | | id 22 |
. . . . . . . . . . . . . . 15
β’ (π = ((mapdβπΎ)βπ) β π = ((mapdβπΎ)βπ)) |
54 | | hdmap1fval.m |
. . . . . . . . . . . . . . 15
β’ π = ((mapdβπΎ)βπ) |
55 | 53, 54 | eqtr4di 2790 |
. . . . . . . . . . . . . 14
β’ (π = ((mapdβπΎ)βπ) β π = π) |
56 | | fveq1 6890 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = π β (πβ(πβ{(2nd βπ₯)})) = (πβ(πβ{(2nd βπ₯)}))) |
57 | 56 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β (πβ(πβ{(2nd βπ₯)})) = (πβ{β}))) |
58 | | fveq1 6890 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π = π β (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))}))) |
59 | 58 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . . . 19
β’ (π = π β ((πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}) β (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))) |
60 | 57, 59 | anbi12d 631 |
. . . . . . . . . . . . . . . . . 18
β’ (π = π β (((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})) β ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))) |
61 | 60 | riotabidv 7366 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))) = (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))) |
62 | 61 | ifeq2d 4548 |
. . . . . . . . . . . . . . . 16
β’ (π = π β if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))) = if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) |
63 | 62 | mpteq2dv 5250 |
. . . . . . . . . . . . . . 15
β’ (π = π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) = (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))) |
64 | 63 | eleq2d 2819 |
. . . . . . . . . . . . . 14
β’ (π = π β (π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
65 | 55, 64 | syl 17 |
. . . . . . . . . . . . 13
β’ (π = ((mapdβπΎ)βπ) β (π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
66 | 52, 65 | sbcie 3820 |
. . . . . . . . . . . 12
β’
([((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))) |
67 | | simp2 1137 |
. . . . . . . . . . . . . . 15
β’ ((π = πΆ β§ π = π· β§ π = π½) β π = π·) |
68 | | xpeq2 5697 |
. . . . . . . . . . . . . . . 16
β’ (π = π· β (π£ Γ π) = (π£ Γ π·)) |
69 | 68 | xpeq1d 5705 |
. . . . . . . . . . . . . . 15
β’ (π = π· β ((π£ Γ π) Γ π£) = ((π£ Γ π·) Γ π£)) |
70 | 67, 69 | syl 17 |
. . . . . . . . . . . . . 14
β’ ((π = πΆ β§ π = π· β§ π = π½) β ((π£ Γ π) Γ π£) = ((π£ Γ π·) Γ π£)) |
71 | | simp1 1136 |
. . . . . . . . . . . . . . . . 17
β’ ((π = πΆ β§ π = π· β§ π = π½) β π = πΆ) |
72 | 71 | fveq2d 6895 |
. . . . . . . . . . . . . . . 16
β’ ((π = πΆ β§ π = π· β§ π = π½) β (0gβπ) = (0gβπΆ)) |
73 | | hdmap1fval.q |
. . . . . . . . . . . . . . . 16
β’ π = (0gβπΆ) |
74 | 72, 73 | eqtr4di 2790 |
. . . . . . . . . . . . . . 15
β’ ((π = πΆ β§ π = π· β§ π = π½) β (0gβπ) = π) |
75 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π = πΆ β§ π = π· β§ π = π½) β π = π½) |
76 | 75 | fveq1d 6893 |
. . . . . . . . . . . . . . . . . 18
β’ ((π = πΆ β§ π = π· β§ π = π½) β (πβ{β}) = (π½β{β})) |
77 | 76 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . 17
β’ ((π = πΆ β§ π = π· β§ π = π½) β ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β (πβ(πβ{(2nd βπ₯)})) = (π½β{β}))) |
78 | 71 | fveq2d 6895 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π = πΆ β§ π = π· β§ π = π½) β (-gβπ) = (-gβπΆ)) |
79 | | hdmap1fval.r |
. . . . . . . . . . . . . . . . . . . . . 22
β’ π
= (-gβπΆ) |
80 | 78, 79 | eqtr4di 2790 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π = πΆ β§ π = π· β§ π = π½) β (-gβπ) = π
) |
81 | 80 | oveqd 7425 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π = πΆ β§ π = π· β§ π = π½) β ((2nd
β(1st βπ₯))(-gβπ)β) = ((2nd β(1st
βπ₯))π
β)) |
82 | 81 | sneqd 4640 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π = πΆ β§ π = π· β§ π = π½) β {((2nd
β(1st βπ₯))(-gβπ)β)} = {((2nd β(1st
βπ₯))π
β)}) |
83 | 75, 82 | fveq12d 6898 |
. . . . . . . . . . . . . . . . . 18
β’ ((π = πΆ β§ π = π· β§ π = π½) β (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}) = (π½β{((2nd
β(1st βπ₯))π
β)})) |
84 | 83 | eqeq2d 2743 |
. . . . . . . . . . . . . . . . 17
β’ ((π = πΆ β§ π = π· β§ π = π½) β ((πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}) β (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))) |
85 | 77, 84 | anbi12d 631 |
. . . . . . . . . . . . . . . 16
β’ ((π = πΆ β§ π = π· β§ π = π½) β (((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})) β ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))) |
86 | 67, 85 | riotaeqbidv 7367 |
. . . . . . . . . . . . . . 15
β’ ((π = πΆ β§ π = π· β§ π = π½) β (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))) = (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))) |
87 | 74, 86 | ifeq12d 4549 |
. . . . . . . . . . . . . 14
β’ ((π = πΆ β§ π = π· β§ π = π½) β if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))) = if((2nd βπ₯) = (0gβπ’), π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))) |
88 | 70, 87 | mpteq12dv 5239 |
. . . . . . . . . . . . 13
β’ ((π = πΆ β§ π = π· β§ π = π½) β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) = (π₯ β ((π£ Γ π·) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))))) |
89 | 88 | eleq2d 2819 |
. . . . . . . . . . . 12
β’ ((π = πΆ β§ π = π· β§ π = π½) β (π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π£ Γ π·) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))))) |
90 | 66, 89 | bitrid 282 |
. . . . . . . . . . 11
β’ ((π = πΆ β§ π = π· β§ π = π½) β ([((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π£ Γ π·) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))))) |
91 | 41, 46, 51, 90 | syl3anc 1371 |
. . . . . . . . . 10
β’ ((π = ((LCDualβπΎ)βπ) β§ π = (Baseβπ) β§ π = (LSpanβπ)) β ([((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π£ Γ π·) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))))) |
92 | 35, 36, 37, 91 | sbc3ie 3863 |
. . . . . . . . 9
β’
([((LCDualβπΎ)βπ) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π£ Γ π·) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))))) |
93 | | simp2 1137 |
. . . . . . . . . . . . 13
β’ ((π’ = π β§ π£ = π β§ π = π) β π£ = π) |
94 | 93 | xpeq1d 5705 |
. . . . . . . . . . . 12
β’ ((π’ = π β§ π£ = π β§ π = π) β (π£ Γ π·) = (π Γ π·)) |
95 | 94, 93 | xpeq12d 5707 |
. . . . . . . . . . 11
β’ ((π’ = π β§ π£ = π β§ π = π) β ((π£ Γ π·) Γ π£) = ((π Γ π·) Γ π)) |
96 | | simp1 1136 |
. . . . . . . . . . . . . . 15
β’ ((π’ = π β§ π£ = π β§ π = π) β π’ = π) |
97 | 96 | fveq2d 6895 |
. . . . . . . . . . . . . 14
β’ ((π’ = π β§ π£ = π β§ π = π) β (0gβπ’) = (0gβπ)) |
98 | | hdmap1fval.o |
. . . . . . . . . . . . . 14
β’ 0 =
(0gβπ) |
99 | 97, 98 | eqtr4di 2790 |
. . . . . . . . . . . . 13
β’ ((π’ = π β§ π£ = π β§ π = π) β (0gβπ’) = 0 ) |
100 | 99 | eqeq2d 2743 |
. . . . . . . . . . . 12
β’ ((π’ = π β§ π£ = π β§ π = π) β ((2nd βπ₯) = (0gβπ’) β (2nd
βπ₯) = 0
)) |
101 | | simp3 1138 |
. . . . . . . . . . . . . . . 16
β’ ((π’ = π β§ π£ = π β§ π = π) β π = π) |
102 | 101 | fveq1d 6893 |
. . . . . . . . . . . . . . 15
β’ ((π’ = π β§ π£ = π β§ π = π) β (πβ{(2nd βπ₯)}) = (πβ{(2nd βπ₯)})) |
103 | 102 | fveqeq2d 6899 |
. . . . . . . . . . . . . 14
β’ ((π’ = π β§ π£ = π β§ π = π) β ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β (πβ(πβ{(2nd βπ₯)})) = (π½β{β}))) |
104 | 96 | fveq2d 6895 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π’ = π β§ π£ = π β§ π = π) β (-gβπ’) = (-gβπ)) |
105 | | hdmap1fval.s |
. . . . . . . . . . . . . . . . . . 19
β’ β =
(-gβπ) |
106 | 104, 105 | eqtr4di 2790 |
. . . . . . . . . . . . . . . . . 18
β’ ((π’ = π β§ π£ = π β§ π = π) β (-gβπ’) = β ) |
107 | 106 | oveqd 7425 |
. . . . . . . . . . . . . . . . 17
β’ ((π’ = π β§ π£ = π β§ π = π) β ((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯)) = ((1st β(1st
βπ₯)) β
(2nd βπ₯))) |
108 | 107 | sneqd 4640 |
. . . . . . . . . . . . . . . 16
β’ ((π’ = π β§ π£ = π β§ π = π) β {((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))} = {((1st
β(1st βπ₯)) β (2nd
βπ₯))}) |
109 | 101, 108 | fveq12d 6898 |
. . . . . . . . . . . . . . 15
β’ ((π’ = π β§ π£ = π β§ π = π) β (πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))}) = (πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) |
110 | 109 | fveqeq2d 6899 |
. . . . . . . . . . . . . 14
β’ ((π’ = π β§ π£ = π β§ π = π) β ((πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}) β (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))) |
111 | 103, 110 | anbi12d 631 |
. . . . . . . . . . . . 13
β’ ((π’ = π β§ π£ = π β§ π = π) β (((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})) β ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))) |
112 | 111 | riotabidv 7366 |
. . . . . . . . . . . 12
β’ ((π’ = π β§ π£ = π β§ π = π) β (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))) = (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))) |
113 | 100, 112 | ifbieq2d 4554 |
. . . . . . . . . . 11
β’ ((π’ = π β§ π£ = π β§ π = π) β if((2nd βπ₯) = (0gβπ’), π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))) = if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))) |
114 | 95, 113 | mpteq12dv 5239 |
. . . . . . . . . 10
β’ ((π’ = π β§ π£ = π β§ π = π) β (π₯ β ((π£ Γ π·) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))) = (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))))) |
115 | 114 | eleq2d 2819 |
. . . . . . . . 9
β’ ((π’ = π β§ π£ = π β§ π = π) β (π β (π₯ β ((π£ Γ π·) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))) β π β (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))))) |
116 | 92, 115 | bitrid 282 |
. . . . . . . 8
β’ ((π’ = π β§ π£ = π β§ π = π) β ([((LCDualβπΎ)βπ) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))))) |
117 | 23, 29, 34, 116 | syl3anc 1371 |
. . . . . . 7
β’ ((π’ = ((DVecHβπΎ)βπ) β§ π£ = (Baseβπ’) β§ π = (LSpanβπ’)) β ([((LCDualβπΎ)βπ) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))))) |
118 | 17, 18, 19, 117 | sbc3ie 3863 |
. . . . . 6
β’
([((DVecHβπΎ)βπ) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))))) |
119 | 16, 118 | bitrdi 286 |
. . . . 5
β’ (π€ = π β ([((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β π β (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))))) |
120 | 119 | eqabcdv 2868 |
. . . 4
β’ (π€ = π β {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))} = (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))))) |
121 | | eqid 2732 |
. . . 4
β’ (π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))}) = (π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))}) |
122 | 28 | fvexi 6905 |
. . . . . . 7
β’ π β V |
123 | 44 | fvexi 6905 |
. . . . . . 7
β’ π· β V |
124 | 122, 123 | xpex 7739 |
. . . . . 6
β’ (π Γ π·) β V |
125 | 124, 122 | xpex 7739 |
. . . . 5
β’ ((π Γ π·) Γ π) β V |
126 | 125 | mptex 7224 |
. . . 4
β’ (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)}))))) β V |
127 | 120, 121,
126 | fvmpt 6998 |
. . 3
β’ (π β π» β ((π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})βπ) = (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))))) |
128 | 6, 127 | sylan9eq 2792 |
. 2
β’ ((πΎ β π΄ β§ π β π») β πΌ = (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))))) |
129 | 1, 128 | syl 17 |
1
β’ (π β πΌ = (π₯ β ((π Γ π·) Γ π) β¦ if((2nd βπ₯) = 0 , π, (β©β β π· ((πβ(πβ{(2nd βπ₯)})) = (π½β{β}) β§ (πβ(πβ{((1st
β(1st βπ₯)) β (2nd
βπ₯))})) = (π½β{((2nd
β(1st βπ₯))π
β)})))))) |