Step | Hyp | Ref
| Expression |
1 | | elex 3492 |
. 2
β’ (πΎ β π β πΎ β V) |
2 | | fveq2 6888 |
. . . . 5
β’ (π = πΎ β (LHypβπ) = (LHypβπΎ)) |
3 | | hdmap1val.h |
. . . . 5
β’ π» = (LHypβπΎ) |
4 | 2, 3 | eqtr4di 2790 |
. . . 4
β’ (π = πΎ β (LHypβπ) = π») |
5 | | fveq2 6888 |
. . . . . . 7
β’ (π = πΎ β (DVecHβπ) = (DVecHβπΎ)) |
6 | 5 | fveq1d 6890 |
. . . . . 6
β’ (π = πΎ β ((DVecHβπ)βπ€) = ((DVecHβπΎ)βπ€)) |
7 | | fveq2 6888 |
. . . . . . . . . 10
β’ (π = πΎ β (LCDualβπ) = (LCDualβπΎ)) |
8 | 7 | fveq1d 6890 |
. . . . . . . . 9
β’ (π = πΎ β ((LCDualβπ)βπ€) = ((LCDualβπΎ)βπ€)) |
9 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π = πΎ β (mapdβπ) = (mapdβπΎ)) |
10 | 9 | fveq1d 6890 |
. . . . . . . . . . . 12
β’ (π = πΎ β ((mapdβπ)βπ€) = ((mapdβπΎ)βπ€)) |
11 | 10 | sbceq1d 3781 |
. . . . . . . . . . 11
β’ (π = πΎ β ([((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
12 | 11 | sbcbidv 3835 |
. . . . . . . . . 10
β’ (π = πΎ β ([(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
13 | 12 | sbcbidv 3835 |
. . . . . . . . 9
β’ (π = πΎ β ([(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
14 | 8, 13 | sbceqbid 3783 |
. . . . . . . 8
β’ (π = πΎ β ([((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
15 | 14 | sbcbidv 3835 |
. . . . . . 7
β’ (π = πΎ β ([(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
16 | 15 | sbcbidv 3835 |
. . . . . 6
β’ (π = πΎ β ([(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
17 | 6, 16 | sbceqbid 3783 |
. . . . 5
β’ (π = πΎ β ([((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))) β [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)}))))))) |
18 | 17 | abbidv 2801 |
. . . 4
β’ (π = πΎ β {π β£ [((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))} = {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))}) |
19 | 4, 18 | mpteq12dv 5238 |
. . 3
β’ (π = πΎ β (π€ β (LHypβπ) β¦ {π β£ [((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))}) = (π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})) |
20 | | df-hdmap1 40652 |
. . 3
β’ HDMap1 =
(π β V β¦ (π€ β (LHypβπ) β¦ {π β£ [((DVecHβπ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})) |
21 | 19, 20, 3 | mptfvmpt 7226 |
. 2
β’ (πΎ β V β
(HDMap1βπΎ) = (π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})) |
22 | 1, 21 | syl 17 |
1
β’ (πΎ β π β (HDMap1βπΎ) = (π€ β π» β¦ {π β£ [((DVecHβπΎ)βπ€) / π’][(Baseβπ’) / π£][(LSpanβπ’) / π][((LCDualβπΎ)βπ€) / π][(Baseβπ) / π][(LSpanβπ) / π][((mapdβπΎ)βπ€) / π]π β (π₯ β ((π£ Γ π) Γ π£) β¦ if((2nd βπ₯) = (0gβπ’), (0gβπ), (β©β β π ((πβ(πβ{(2nd βπ₯)})) = (πβ{β}) β§ (πβ(πβ{((1st
β(1st βπ₯))(-gβπ’)(2nd βπ₯))})) = (πβ{((2nd
β(1st βπ₯))(-gβπ)β)})))))})) |