Detailed syntax breakdown of Definition df-hfmul
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | chft 30961 | . 2
class 
·fn | 
| 2 |  | vf | . . 3
setvar 𝑓 | 
| 3 |  | vg | . . 3
setvar 𝑔 | 
| 4 |  | cc 11153 | . . 3
class
ℂ | 
| 5 |  | chba 30938 | . . . 4
class 
ℋ | 
| 6 |  | cmap 8866 | . . . 4
class 
↑m | 
| 7 | 4, 5, 6 | co 7431 | . . 3
class (ℂ
↑m ℋ) | 
| 8 |  | vx | . . . 4
setvar 𝑥 | 
| 9 | 2 | cv 1539 | . . . . 5
class 𝑓 | 
| 10 | 8 | cv 1539 | . . . . . 6
class 𝑥 | 
| 11 | 3 | cv 1539 | . . . . . 6
class 𝑔 | 
| 12 | 10, 11 | cfv 6561 | . . . . 5
class (𝑔‘𝑥) | 
| 13 |  | cmul 11160 | . . . . 5
class 
· | 
| 14 | 9, 12, 13 | co 7431 | . . . 4
class (𝑓 · (𝑔‘𝑥)) | 
| 15 | 8, 5, 14 | cmpt 5225 | . . 3
class (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥))) | 
| 16 | 2, 3, 4, 7, 15 | cmpo 7433 | . 2
class (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ
↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥)))) | 
| 17 | 1, 16 | wceq 1540 | 1
wff 
·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑m ℋ)
↦ (𝑥 ∈ ℋ
↦ (𝑓 · (𝑔‘𝑥)))) |