HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-hfmul Structured version   Visualization version   GIF version

Definition df-hfmul 31411
Description: Define the scalar product with a Hilbert space functional. Definition of [Beran] p. 111. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-hfmul ยทfn = (๐‘“ โˆˆ โ„‚, ๐‘” โˆˆ (โ„‚ โ†‘m โ„‹) โ†ฆ (๐‘ฅ โˆˆ โ„‹ โ†ฆ (๐‘“ ยท (๐‘”โ€˜๐‘ฅ))))
Distinct variable group:   ๐‘“,๐‘”,๐‘ฅ

Detailed syntax breakdown of Definition df-hfmul
StepHypRef Expression
1 chft 30619 . 2 class ยทfn
2 vf . . 3 setvar ๐‘“
3 vg . . 3 setvar ๐‘”
4 cc 11103 . . 3 class โ„‚
5 chba 30596 . . . 4 class โ„‹
6 cmap 8815 . . . 4 class โ†‘m
74, 5, 6co 7401 . . 3 class (โ„‚ โ†‘m โ„‹)
8 vx . . . 4 setvar ๐‘ฅ
92cv 1532 . . . . 5 class ๐‘“
108cv 1532 . . . . . 6 class ๐‘ฅ
113cv 1532 . . . . . 6 class ๐‘”
1210, 11cfv 6533 . . . . 5 class (๐‘”โ€˜๐‘ฅ)
13 cmul 11110 . . . . 5 class ยท
149, 12, 13co 7401 . . . 4 class (๐‘“ ยท (๐‘”โ€˜๐‘ฅ))
158, 5, 14cmpt 5221 . . 3 class (๐‘ฅ โˆˆ โ„‹ โ†ฆ (๐‘“ ยท (๐‘”โ€˜๐‘ฅ)))
162, 3, 4, 7, 15cmpo 7403 . 2 class (๐‘“ โˆˆ โ„‚, ๐‘” โˆˆ (โ„‚ โ†‘m โ„‹) โ†ฆ (๐‘ฅ โˆˆ โ„‹ โ†ฆ (๐‘“ ยท (๐‘”โ€˜๐‘ฅ))))
171, 16wceq 1533 1 wff ยทfn = (๐‘“ โˆˆ โ„‚, ๐‘” โˆˆ (โ„‚ โ†‘m โ„‹) โ†ฆ (๐‘ฅ โˆˆ โ„‹ โ†ฆ (๐‘“ ยท (๐‘”โ€˜๐‘ฅ))))
Colors of variables: wff setvar class
This definition is referenced by:  hfmmval  31416
  Copyright terms: Public domain W3C validator