HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hosmval Structured version   Visualization version   GIF version

Theorem hosmval 30988
Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hosmval ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇

Proof of Theorem hosmval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30252 . . 3 ℋ ∈ V
21, 1elmap 8865 . 2 (𝑆 ∈ ( ℋ ↑m ℋ) ↔ 𝑆: ℋ⟶ ℋ)
31, 1elmap 8865 . 2 (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ)
4 fveq1 6891 . . . . 5 (𝑓 = 𝑆 → (𝑓𝑥) = (𝑆𝑥))
54oveq1d 7424 . . . 4 (𝑓 = 𝑆 → ((𝑓𝑥) + (𝑔𝑥)) = ((𝑆𝑥) + (𝑔𝑥)))
65mpteq2dv 5251 . . 3 (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑔𝑥))))
7 fveq1 6891 . . . . 5 (𝑔 = 𝑇 → (𝑔𝑥) = (𝑇𝑥))
87oveq2d 7425 . . . 4 (𝑔 = 𝑇 → ((𝑆𝑥) + (𝑔𝑥)) = ((𝑆𝑥) + (𝑇𝑥)))
98mpteq2dv 5251 . . 3 (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
10 df-hosum 30983 . . 3 +op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
111mptex 7225 . . 3 (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))) ∈ V
126, 9, 10, 11ovmpo 7568 . 2 ((𝑆 ∈ ( ℋ ↑m ℋ) ∧ 𝑇 ∈ ( ℋ ↑m ℋ)) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
132, 3, 12syl2anbr 600 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  cmpt 5232  wf 6540  cfv 6544  (class class class)co 7409  m cmap 8820  chba 30172   + cva 30173   +op chos 30191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-hilex 30252
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-hosum 30983
This theorem is referenced by:  hosval  30993  hoaddcl  31011
  Copyright terms: Public domain W3C validator