| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hosmval | Structured version Visualization version GIF version | ||
| Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hosmval | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30974 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1, 1 | elmap 8795 | . 2 ⊢ (𝑆 ∈ ( ℋ ↑m ℋ) ↔ 𝑆: ℋ⟶ ℋ) |
| 3 | 1, 1 | elmap 8795 | . 2 ⊢ (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ) |
| 4 | fveq1 6821 | . . . . 5 ⊢ (𝑓 = 𝑆 → (𝑓‘𝑥) = (𝑆‘𝑥)) | |
| 5 | 4 | oveq1d 7361 | . . . 4 ⊢ (𝑓 = 𝑆 → ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)) = ((𝑆‘𝑥) +ℎ (𝑔‘𝑥))) |
| 6 | 5 | mpteq2dv 5185 | . . 3 ⊢ (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑔‘𝑥)))) |
| 7 | fveq1 6821 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
| 8 | 7 | oveq2d 7362 | . . . 4 ⊢ (𝑔 = 𝑇 → ((𝑆‘𝑥) +ℎ (𝑔‘𝑥)) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 9 | 8 | mpteq2dv 5185 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
| 10 | df-hosum 31705 | . . 3 ⊢ +op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)))) | |
| 11 | 1 | mptex 7157 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) ∈ V |
| 12 | 6, 9, 10, 11 | ovmpo 7506 | . 2 ⊢ ((𝑆 ∈ ( ℋ ↑m ℋ) ∧ 𝑇 ∈ ( ℋ ↑m ℋ)) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
| 13 | 2, 3, 12 | syl2anbr 599 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5172 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℋchba 30894 +ℎ cva 30895 +op chos 30913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-hilex 30974 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-hosum 31705 |
| This theorem is referenced by: hosval 31715 hoaddcl 31733 |
| Copyright terms: Public domain | W3C validator |