Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-hfsum Structured version   Visualization version   GIF version

Definition df-hfsum 29523
 Description: Define the sum of two Hilbert space functionals. Definition of [Beran] p. 111. Note that unlike some authors, we define a functional as any function from ℋ to ℂ, not just linear (or bounded linear) ones. (Contributed by NM, 23-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-hfsum +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-hfsum
StepHypRef Expression
1 chfs 28731 . 2 class +fn
2 vf . . 3 setvar 𝑓
3 vg . . 3 setvar 𝑔
4 cc 10526 . . . 4 class
5 chba 28709 . . . 4 class
6 cmap 8391 . . . 4 class m
74, 5, 6co 7135 . . 3 class (ℂ ↑m ℋ)
8 vx . . . 4 setvar 𝑥
98cv 1537 . . . . . 6 class 𝑥
102cv 1537 . . . . . 6 class 𝑓
119, 10cfv 6324 . . . . 5 class (𝑓𝑥)
123cv 1537 . . . . . 6 class 𝑔
139, 12cfv 6324 . . . . 5 class (𝑔𝑥)
14 caddc 10531 . . . . 5 class +
1511, 13, 14co 7135 . . . 4 class ((𝑓𝑥) + (𝑔𝑥))
168, 5, 15cmpt 5110 . . 3 class (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥)))
172, 3, 7, 7, 16cmpo 7137 . 2 class (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
181, 17wceq 1538 1 wff +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
 Colors of variables: wff setvar class This definition is referenced by:  hfsmval  29528
 Copyright terms: Public domain W3C validator