Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > df-hfsum | Structured version Visualization version GIF version |
Description: Define the sum of two Hilbert space functionals. Definition of [Beran] p. 111. Note that unlike some authors, we define a functional as any function from ℋ to ℂ, not just linear (or bounded linear) ones. (Contributed by NM, 23-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-hfsum | ⊢ +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chfs 29022 | . 2 class +fn | |
2 | vf | . . 3 setvar 𝑓 | |
3 | vg | . . 3 setvar 𝑔 | |
4 | cc 10727 | . . . 4 class ℂ | |
5 | chba 29000 | . . . 4 class ℋ | |
6 | cmap 8508 | . . . 4 class ↑m | |
7 | 4, 5, 6 | co 7213 | . . 3 class (ℂ ↑m ℋ) |
8 | vx | . . . 4 setvar 𝑥 | |
9 | 8 | cv 1542 | . . . . . 6 class 𝑥 |
10 | 2 | cv 1542 | . . . . . 6 class 𝑓 |
11 | 9, 10 | cfv 6380 | . . . . 5 class (𝑓‘𝑥) |
12 | 3 | cv 1542 | . . . . . 6 class 𝑔 |
13 | 9, 12 | cfv 6380 | . . . . 5 class (𝑔‘𝑥) |
14 | caddc 10732 | . . . . 5 class + | |
15 | 11, 13, 14 | co 7213 | . . . 4 class ((𝑓‘𝑥) + (𝑔‘𝑥)) |
16 | 8, 5, 15 | cmpt 5135 | . . 3 class (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥))) |
17 | 2, 3, 7, 7, 16 | cmpo 7215 | . 2 class (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) |
18 | 1, 17 | wceq 1543 | 1 wff +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) |
Colors of variables: wff setvar class |
This definition is referenced by: hfsmval 29819 |
Copyright terms: Public domain | W3C validator |