![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hfmmval | Structured version Visualization version GIF version |
Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hfmmval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10464 | . . 3 ⊢ ℂ ∈ V | |
2 | ax-hilex 28467 | . . 3 ⊢ ℋ ∈ V | |
3 | 1, 2 | elmap 8285 | . 2 ⊢ (𝑇 ∈ (ℂ ↑𝑚 ℋ) ↔ 𝑇: ℋ⟶ℂ) |
4 | oveq1 7023 | . . . 4 ⊢ (𝑓 = 𝐴 → (𝑓 · (𝑔‘𝑥)) = (𝐴 · (𝑔‘𝑥))) | |
5 | 4 | mpteq2dv 5056 | . . 3 ⊢ (𝑓 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔‘𝑥)))) |
6 | fveq1 6537 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
7 | 6 | oveq2d 7032 | . . . 4 ⊢ (𝑔 = 𝑇 → (𝐴 · (𝑔‘𝑥)) = (𝐴 · (𝑇‘𝑥))) |
8 | 7 | mpteq2dv 5056 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
9 | df-hfmul 29202 | . . 3 ⊢ ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑𝑚 ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥)))) | |
10 | 2 | mptex 6852 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥))) ∈ V |
11 | 5, 8, 9, 10 | ovmpo 7166 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ (ℂ ↑𝑚 ℋ)) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
12 | 3, 11 | sylan2br 594 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ↦ cmpt 5041 ⟶wf 6221 ‘cfv 6225 (class class class)co 7016 ↑𝑚 cmap 8256 ℂcc 10381 · cmul 10388 ℋchba 28387 ·fn chft 28410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-hilex 28467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-map 8258 df-hfmul 29202 |
This theorem is referenced by: hfmval 29212 brafnmul 29419 kbass2 29585 |
Copyright terms: Public domain | W3C validator |