| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hfmmval | Structured version Visualization version GIF version | ||
| Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hfmmval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11149 | . . 3 ⊢ ℂ ∈ V | |
| 2 | ax-hilex 30928 | . . 3 ⊢ ℋ ∈ V | |
| 3 | 1, 2 | elmap 8844 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
| 4 | oveq1 7394 | . . . 4 ⊢ (𝑓 = 𝐴 → (𝑓 · (𝑔‘𝑥)) = (𝐴 · (𝑔‘𝑥))) | |
| 5 | 4 | mpteq2dv 5201 | . . 3 ⊢ (𝑓 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔‘𝑥)))) |
| 6 | fveq1 6857 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
| 7 | 6 | oveq2d 7403 | . . . 4 ⊢ (𝑔 = 𝑇 → (𝐴 · (𝑔‘𝑥)) = (𝐴 · (𝑇‘𝑥))) |
| 8 | 7 | mpteq2dv 5201 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
| 9 | df-hfmul 31663 | . . 3 ⊢ ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥)))) | |
| 10 | 2 | mptex 7197 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥))) ∈ V |
| 11 | 5, 8, 9, 10 | ovmpo 7549 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ (ℂ ↑m ℋ)) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
| 12 | 3, 11 | sylan2br 595 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℂcc 11066 · cmul 11073 ℋchba 30848 ·fn chft 30871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-hilex 30928 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-hfmul 31663 |
| This theorem is referenced by: hfmval 31673 brafnmul 31880 kbass2 32046 |
| Copyright terms: Public domain | W3C validator |