![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hfmmval | Structured version Visualization version GIF version |
Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hfmmval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11234 | . . 3 ⊢ ℂ ∈ V | |
2 | ax-hilex 31028 | . . 3 ⊢ ℋ ∈ V | |
3 | 1, 2 | elmap 8910 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
4 | oveq1 7438 | . . . 4 ⊢ (𝑓 = 𝐴 → (𝑓 · (𝑔‘𝑥)) = (𝐴 · (𝑔‘𝑥))) | |
5 | 4 | mpteq2dv 5250 | . . 3 ⊢ (𝑓 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔‘𝑥)))) |
6 | fveq1 6906 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
7 | 6 | oveq2d 7447 | . . . 4 ⊢ (𝑔 = 𝑇 → (𝐴 · (𝑔‘𝑥)) = (𝐴 · (𝑇‘𝑥))) |
8 | 7 | mpteq2dv 5250 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
9 | df-hfmul 31763 | . . 3 ⊢ ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥)))) | |
10 | 2 | mptex 7243 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥))) ∈ V |
11 | 5, 8, 9, 10 | ovmpo 7593 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ (ℂ ↑m ℋ)) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
12 | 3, 11 | sylan2br 595 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℂcc 11151 · cmul 11158 ℋchba 30948 ·fn chft 30971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-hilex 31028 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-hfmul 31763 |
This theorem is referenced by: hfmval 31773 brafnmul 31980 kbass2 32146 |
Copyright terms: Public domain | W3C validator |