HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hfmmval Structured version   Visualization version   GIF version

Theorem hfmmval 31562
Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hfmmval ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem hfmmval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 11220 . . 3 ℂ ∈ V
2 ax-hilex 30822 . . 3 ℋ ∈ V
31, 2elmap 8890 . 2 (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ)
4 oveq1 7427 . . . 4 (𝑓 = 𝐴 → (𝑓 · (𝑔𝑥)) = (𝐴 · (𝑔𝑥)))
54mpteq2dv 5250 . . 3 (𝑓 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔𝑥))))
6 fveq1 6896 . . . . 5 (𝑔 = 𝑇 → (𝑔𝑥) = (𝑇𝑥))
76oveq2d 7436 . . . 4 (𝑔 = 𝑇 → (𝐴 · (𝑔𝑥)) = (𝐴 · (𝑇𝑥)))
87mpteq2dv 5250 . . 3 (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
9 df-hfmul 31557 . . 3 ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
102mptex 7235 . . 3 (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))) ∈ V
115, 8, 9, 10ovmpo 7581 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ (ℂ ↑m ℋ)) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
123, 11sylan2br 594 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cmpt 5231  wf 6544  cfv 6548  (class class class)co 7420  m cmap 8845  cc 11137   · cmul 11144  chba 30742   ·fn chft 30765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-hilex 30822
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-map 8847  df-hfmul 31557
This theorem is referenced by:  hfmval  31567  brafnmul  31774  kbass2  31940
  Copyright terms: Public domain W3C validator