| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hfmmval | Structured version Visualization version GIF version | ||
| Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hfmmval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11109 | . . 3 ⊢ ℂ ∈ V | |
| 2 | ax-hilex 30961 | . . 3 ⊢ ℋ ∈ V | |
| 3 | 1, 2 | elmap 8805 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
| 4 | oveq1 7360 | . . . 4 ⊢ (𝑓 = 𝐴 → (𝑓 · (𝑔‘𝑥)) = (𝐴 · (𝑔‘𝑥))) | |
| 5 | 4 | mpteq2dv 5189 | . . 3 ⊢ (𝑓 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔‘𝑥)))) |
| 6 | fveq1 6825 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
| 7 | 6 | oveq2d 7369 | . . . 4 ⊢ (𝑔 = 𝑇 → (𝐴 · (𝑔‘𝑥)) = (𝐴 · (𝑇‘𝑥))) |
| 8 | 7 | mpteq2dv 5189 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
| 9 | df-hfmul 31696 | . . 3 ⊢ ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥)))) | |
| 10 | 2 | mptex 7163 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥))) ∈ V |
| 11 | 5, 8, 9, 10 | ovmpo 7513 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ (ℂ ↑m ℋ)) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
| 12 | 3, 11 | sylan2br 595 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 ℂcc 11026 · cmul 11033 ℋchba 30881 ·fn chft 30904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-hilex 30961 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-hfmul 31696 |
| This theorem is referenced by: hfmval 31706 brafnmul 31913 kbass2 32079 |
| Copyright terms: Public domain | W3C validator |