HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hfmmval Structured version   Visualization version   GIF version

Theorem hfmmval 31717
Description: Value of the scalar product with a Hilbert space functional. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hfmmval ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem hfmmval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 11087 . . 3 ℂ ∈ V
2 ax-hilex 30977 . . 3 ℋ ∈ V
31, 2elmap 8795 . 2 (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ)
4 oveq1 7353 . . . 4 (𝑓 = 𝐴 → (𝑓 · (𝑔𝑥)) = (𝐴 · (𝑔𝑥)))
54mpteq2dv 5185 . . 3 (𝑓 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔𝑥))))
6 fveq1 6821 . . . . 5 (𝑔 = 𝑇 → (𝑔𝑥) = (𝑇𝑥))
76oveq2d 7362 . . . 4 (𝑔 = 𝑇 → (𝐴 · (𝑔𝑥)) = (𝐴 · (𝑇𝑥)))
87mpteq2dv 5185 . . 3 (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
9 df-hfmul 31712 . . 3 ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
102mptex 7157 . . 3 (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))) ∈ V
115, 8, 9, 10ovmpo 7506 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ (ℂ ↑m ℋ)) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
123, 11sylan2br 595 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝐴 ·fn 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cc 11004   · cmul 11011  chba 30897   ·fn chft 30920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-hilex 30977
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-hfmul 31712
This theorem is referenced by:  hfmval  31722  brafnmul  31929  kbass2  32095
  Copyright terms: Public domain W3C validator