Home | Metamath
Proof Explorer Theorem List (p. 315 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29288) |
Hilbert Space Explorer
(29289-30811) |
Users' Mathboxes
(30812-46499) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cycpmco2lem1 31401 | Lemma for cycpmco2 31408. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) & ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) & ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) & ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) ⇒ ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑊)‘𝐽)) | ||
Theorem | cycpmco2lem2 31402 | Lemma for cycpmco2 31408. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) & ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) & ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) & ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) ⇒ ⊢ (𝜑 → (𝑈‘𝐸) = 𝐼) | ||
Theorem | cycpmco2lem3 31403 | Lemma for cycpmco2 31408. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) & ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) & ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) & ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) ⇒ ⊢ (𝜑 → ((♯‘𝑈) − 1) = (♯‘𝑊)) | ||
Theorem | cycpmco2lem4 31404 | Lemma for cycpmco2 31408. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) & ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) & ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) & ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) ⇒ ⊢ (𝜑 → ((𝑀‘𝑊)‘((𝑀‘〈“𝐼𝐽”〉)‘𝐼)) = ((𝑀‘𝑈)‘𝐼)) | ||
Theorem | cycpmco2lem5 31405 | Lemma for cycpmco2 31408. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) & ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) & ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) & ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) & ⊢ (𝜑 → 𝐾 ∈ ran 𝑊) & ⊢ (𝜑 → (◡𝑈‘𝐾) = ((♯‘𝑈) − 1)) ⇒ ⊢ (𝜑 → ((𝑀‘𝑈)‘𝐾) = ((𝑀‘𝑊)‘𝐾)) | ||
Theorem | cycpmco2lem6 31406 | Lemma for cycpmco2 31408. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) & ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) & ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) & ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) & ⊢ (𝜑 → 𝐾 ∈ ran 𝑊) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) & ⊢ (𝜑 → (◡𝑈‘𝐾) ∈ (𝐸..^((♯‘𝑈) − 1))) ⇒ ⊢ (𝜑 → ((𝑀‘𝑈)‘𝐾) = ((𝑀‘𝑊)‘𝐾)) | ||
Theorem | cycpmco2lem7 31407 | Lemma for cycpmco2 31408. (Contributed by Thierry Arnoux, 4-Jan-2024.) |
⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) & ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) & ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) & ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) & ⊢ (𝜑 → 𝐾 ∈ ran 𝑊) & ⊢ (𝜑 → 𝐾 ≠ 𝐽) & ⊢ (𝜑 → (◡𝑈‘𝐾) ∈ (0..^𝐸)) ⇒ ⊢ (𝜑 → ((𝑀‘𝑈)‘𝐾) = ((𝑀‘𝑊)‘𝐾)) | ||
Theorem | cycpmco2 31408 | The composition of a cyclic permutation and a transposition of one element in the cycle and one outside the cycle results in a cyclic permutation with one more element in its orbit. (Contributed by Thierry Arnoux, 2-Jan-2024.) |
⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐼 ∈ (𝐷 ∖ ran 𝑊)) & ⊢ (𝜑 → 𝐽 ∈ ran 𝑊) & ⊢ 𝐸 = ((◡𝑊‘𝐽) + 1) & ⊢ 𝑈 = (𝑊 splice 〈𝐸, 𝐸, 〈“𝐼”〉〉) ⇒ ⊢ (𝜑 → ((𝑀‘𝑊) ∘ (𝑀‘〈“𝐼𝐽”〉)) = (𝑀‘𝑈)) | ||
Theorem | cyc2fvx 31409 | Function value of a 2-cycle outside of its orbit. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ 𝐶 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) ⇒ ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐾) = 𝐾) | ||
Theorem | cycpm3cl 31410 | Closure of the 3-cycles in the permutations. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ 𝐶 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) ⇒ ⊢ (𝜑 → (𝐶‘〈“𝐼𝐽𝐾”〉) ∈ (Base‘𝑆)) | ||
Theorem | cycpm3cl2 31411 | Closure of the 3-cycles in the class of 3-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ 𝐶 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) ⇒ ⊢ (𝜑 → (𝐶‘〈“𝐼𝐽𝐾”〉) ∈ (𝐶 “ (◡♯ “ {3}))) | ||
Theorem | cyc3fv1 31412 | Function value of a 3-cycle at the first point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ 𝐶 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) ⇒ ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐼) = 𝐽) | ||
Theorem | cyc3fv2 31413 | Function value of a 3-cycle at the second point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ 𝐶 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) ⇒ ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽) = 𝐾) | ||
Theorem | cyc3fv3 31414 | Function value of a 3-cycle at the third point. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ 𝐶 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) ⇒ ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐾) = 𝐼) | ||
Theorem | cyc3co2 31415 | Represent a 3-cycle as a composition of two 2-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
⊢ 𝐶 = (toCyc‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) & ⊢ · = (+g‘𝑆) ⇒ ⊢ (𝜑 → (𝐶‘〈“𝐼𝐽𝐾”〉) = ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))) | ||
Theorem | cycpmconjvlem 31416 | Lemma for cycpmconjv 31417. (Contributed by Thierry Arnoux, 9-Oct-2023.) |
⊢ (𝜑 → 𝐹:𝐷–1-1-onto→𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐷) ⇒ ⊢ (𝜑 → ((𝐹 ↾ (𝐷 ∖ 𝐵)) ∘ ◡𝐹) = ( I ↾ (𝐷 ∖ ran (𝐹 ↾ 𝐵)))) | ||
Theorem | cycpmconjv 31417 | A formula for computing conjugacy classes of cyclic permutations. Formula in property (b) of [Lang] p. 32. (Contributed by Thierry Arnoux, 9-Oct-2023.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑀 = (toCyc‘𝐷) & ⊢ + = (+g‘𝑆) & ⊢ − = (-g‘𝑆) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵 ∧ 𝑊 ∈ dom 𝑀) → ((𝐺 + (𝑀‘𝑊)) − 𝐺) = (𝑀‘(𝐺 ∘ 𝑊))) | ||
Theorem | cycpmrn 31418 | The range of the word used to build a cycle is the cycle's orbit, i.e., the set of points it moves. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
⊢ 𝑀 = (toCyc‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) & ⊢ (𝜑 → 1 < (♯‘𝑊)) ⇒ ⊢ (𝜑 → ran 𝑊 = dom ((𝑀‘𝑊) ∖ I )) | ||
Theorem | tocyccntz 31419* | All elements of a (finite) set of cycles commute if their orbits are disjoint. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑍 = (Cntz‘𝑆) & ⊢ 𝑀 = (toCyc‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 ran 𝑥) & ⊢ (𝜑 → 𝐴 ⊆ dom 𝑀) ⇒ ⊢ (𝜑 → (𝑀 “ 𝐴) ⊆ (𝑍‘(𝑀 “ 𝐴))) | ||
Theorem | evpmval 31420 | Value of the set of even permutations, the alternating group. (Contributed by Thierry Arnoux, 1-Nov-2023.) |
⊢ 𝐴 = (pmEven‘𝐷) ⇒ ⊢ (𝐷 ∈ 𝑉 → 𝐴 = (◡(pmSgn‘𝐷) “ {1})) | ||
Theorem | cnmsgn0g 31421 | The neutral element of the sign subgroup of the complex numbers. (Contributed by Thierry Arnoux, 1-Nov-2023.) |
⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) ⇒ ⊢ 1 = (0g‘𝑈) | ||
Theorem | evpmsubg 31422 | The alternating group is a subgroup of the symmetric group. (Contributed by Thierry Arnoux, 1-Nov-2023.) |
⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝐴 = (pmEven‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → 𝐴 ∈ (SubGrp‘𝑆)) | ||
Theorem | evpmid 31423 | The identity is an even permutation. (Contributed by Thierry Arnoux, 18-Sep-2023.) |
⊢ 𝑆 = (SymGrp‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → ( I ↾ 𝐷) ∈ (pmEven‘𝐷)) | ||
Theorem | altgnsg 31424 | The alternating group (pmEven‘𝐷) is a normal subgroup of the symmetric group. (Contributed by Thierry Arnoux, 18-Sep-2023.) |
⊢ 𝑆 = (SymGrp‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → (pmEven‘𝐷) ∈ (NrmSGrp‘𝑆)) | ||
Theorem | cyc3evpm 31425 | 3-Cycles are even permutations. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ 𝐶 = ((toCyc‘𝐷) “ (◡♯ “ {3})) & ⊢ 𝐴 = (pmEven‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → 𝐶 ⊆ 𝐴) | ||
Theorem | cyc3genpmlem 31426* | Lemma for cyc3genpm 31427. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
⊢ 𝐶 = (𝑀 “ (◡♯ “ {3})) & ⊢ 𝐴 = (pmEven‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (♯‘𝐷) & ⊢ 𝑀 = (toCyc‘𝐷) & ⊢ · = (+g‘𝑆) & ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐿 ∈ 𝐷) & ⊢ (𝜑 → 𝐸 = (𝑀‘〈“𝐼𝐽”〉)) & ⊢ (𝜑 → 𝐹 = (𝑀‘〈“𝐾𝐿”〉)) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐾 ≠ 𝐿) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ Word 𝐶(𝐸 · 𝐹) = (𝑆 Σg 𝑐)) | ||
Theorem | cyc3genpm 31427* | The alternating group 𝐴 is generated by 3-cycles. Property (a) of [Lang] p. 32 . (Contributed by Thierry Arnoux, 27-Sep-2023.) |
⊢ 𝐶 = (𝑀 “ (◡♯ “ {3})) & ⊢ 𝐴 = (pmEven‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (♯‘𝐷) & ⊢ 𝑀 = (toCyc‘𝐷) ⇒ ⊢ (𝐷 ∈ Fin → (𝑄 ∈ 𝐴 ↔ ∃𝑤 ∈ Word 𝐶𝑄 = (𝑆 Σg 𝑤))) | ||
Theorem | cycpmgcl 31428 | Cyclic permutations are permutations, similar to cycpmcl 31391, but where the set of cyclic permutations of length 𝑃 is expressed in terms of a preimage. (Contributed by Thierry Arnoux, 13-Oct-2023.) |
⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (♯‘𝐷) & ⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝐵 = (Base‘𝑆) ⇒ ⊢ ((𝐷 ∈ 𝑉 ∧ 𝑃 ∈ (0...𝑁)) → 𝐶 ⊆ 𝐵) | ||
Theorem | cycpmconjslem1 31429 | Lemma for cycpmconjs 31431. (Contributed by Thierry Arnoux, 14-Oct-2023.) |
⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (♯‘𝐷) & ⊢ 𝑀 = (toCyc‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) & ⊢ (𝜑 → (♯‘𝑊) = 𝑃) ⇒ ⊢ (𝜑 → ((◡𝑊 ∘ (𝑀‘𝑊)) ∘ 𝑊) = (( I ↾ (0..^𝑃)) cyclShift 1)) | ||
Theorem | cycpmconjslem2 31430* | Lemma for cycpmconjs 31431. (Contributed by Thierry Arnoux, 14-Oct-2023.) |
⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (♯‘𝐷) & ⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ − = (-g‘𝑆) & ⊢ (𝜑 → 𝑃 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑄 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑞(𝑞:(0..^𝑁)–1-1-onto→𝐷 ∧ ((◡𝑞 ∘ 𝑄) ∘ 𝑞) = ((( I ↾ (0..^𝑃)) cyclShift 1) ∪ ( I ↾ (𝑃..^𝑁))))) | ||
Theorem | cycpmconjs 31431* | All cycles of the same length are conjugate in the symmetric group. (Contributed by Thierry Arnoux, 14-Oct-2023.) |
⊢ 𝐶 = (𝑀 “ (◡♯ “ {𝑃})) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (♯‘𝐷) & ⊢ 𝑀 = (toCyc‘𝐷) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ − = (-g‘𝑆) & ⊢ (𝜑 → 𝑃 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑄 ∈ 𝐶) & ⊢ (𝜑 → 𝑇 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝐵 𝑄 = ((𝑝 + 𝑇) − 𝑝)) | ||
Theorem | cyc3conja 31432* | All 3-cycles are conjugate in the alternating group An for n>= 5. Property (b) of [Lang] p. 32. (Contributed by Thierry Arnoux, 15-Oct-2023.) |
⊢ 𝐶 = (𝑀 “ (◡♯ “ {3})) & ⊢ 𝐴 = (pmEven‘𝐷) & ⊢ 𝑆 = (SymGrp‘𝐷) & ⊢ 𝑁 = (♯‘𝐷) & ⊢ 𝑀 = (toCyc‘𝐷) & ⊢ + = (+g‘𝑆) & ⊢ − = (-g‘𝑆) & ⊢ (𝜑 → 5 ≤ 𝑁) & ⊢ (𝜑 → 𝐷 ∈ Fin) & ⊢ (𝜑 → 𝑄 ∈ 𝐶) & ⊢ (𝜑 → 𝑇 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∃𝑝 ∈ 𝐴 𝑄 = ((𝑝 + 𝑇) − 𝑝)) | ||
Syntax | csgns 31433 | Extend class notation to include the Signum function. |
class sgns | ||
Definition | df-sgns 31434* | Signum function for a structure. See also df-sgn 14808 for the version for extended reals. (Contributed by Thierry Arnoux, 10-Sep-2018.) |
⊢ sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g‘𝑟), 0, if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1)))) | ||
Theorem | sgnsv 31435* | The sign mapping. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ < = (lt‘𝑅) & ⊢ 𝑆 = (sgns‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) | ||
Theorem | sgnsval 31436 | The sign value. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ < = (lt‘𝑅) & ⊢ 𝑆 = (sgns‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑆‘𝑋) = if(𝑋 = 0 , 0, if( 0 < 𝑋, 1, -1))) | ||
Theorem | sgnsf 31437 | The sign function. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ < = (lt‘𝑅) & ⊢ 𝑆 = (sgns‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) | ||
Syntax | cinftm 31438 | Class notation for the infinitesimal relation. |
class ⋘ | ||
Syntax | carchi 31439 | Class notation for the Archimedean property. |
class Archi | ||
Definition | df-inftm 31440* | Define the relation "𝑥 is infinitesimal with respect to 𝑦 " for a structure 𝑤. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ ⋘ = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦))}) | ||
Definition | df-archi 31441 | A structure said to be Archimedean if it has no infinitesimal elements. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} | ||
Theorem | inftmrel 31442 | The infinitesimal relation for a structure 𝑊. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (⋘‘𝑊) ⊆ (𝐵 × 𝐵)) | ||
Theorem | isinftm 31443* | Express 𝑥 is infinitesimal with respect to 𝑦 for a structure 𝑊. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ < = (lt‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(⋘‘𝑊)𝑌 ↔ ( 0 < 𝑋 ∧ ∀𝑛 ∈ ℕ (𝑛 · 𝑋) < 𝑌))) | ||
Theorem | isarchi 31444* | Express the predicate "𝑊 is Archimedean ". (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ < = (⋘‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑥 < 𝑦)) | ||
Theorem | pnfinf 31445 | Plus infinity is an infinite for the completed real line, as any real number is infinitesimal compared to it. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
⊢ (𝐴 ∈ ℝ+ → 𝐴(⋘‘ℝ*𝑠)+∞) | ||
Theorem | xrnarchi 31446 | The completed real line is not Archimedean. (Contributed by Thierry Arnoux, 1-Feb-2018.) |
⊢ ¬ ℝ*𝑠 ∈ Archi | ||
Theorem | isarchi2 31447* | Alternative way to express the predicate "𝑊 is Archimedean ", for Tosets. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) ⇒ ⊢ ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 ≤ (𝑛 · 𝑥)))) | ||
Theorem | submarchi 31448 | A submonoid is archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.) |
⊢ (((𝑊 ∈ Toset ∧ 𝑊 ∈ Archi) ∧ 𝐴 ∈ (SubMnd‘𝑊)) → (𝑊 ↾s 𝐴) ∈ Archi) | ||
Theorem | isarchi3 31449* | This is the usual definition of the Archimedean property for an ordered group. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) ⇒ ⊢ (𝑊 ∈ oGrp → (𝑊 ∈ Archi ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ( 0 < 𝑥 → ∃𝑛 ∈ ℕ 𝑦 < (𝑛 · 𝑥)))) | ||
Theorem | archirng 31450* | Property of Archimedean ordered groups, framing positive 𝑌 between multiples of 𝑋. (Contributed by Thierry Arnoux, 12-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → 0 < 𝑌) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) | ||
Theorem | archirngz 31451* | Property of Archimedean left and right ordered groups. (Contributed by Thierry Arnoux, 6-May-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℤ ((𝑛 · 𝑋) < 𝑌 ∧ 𝑌 ≤ ((𝑛 + 1) · 𝑋))) | ||
Theorem | archiexdiv 31452* | In an Archimedean group, given two positive elements, there exists a "divisor" 𝑛. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) ⇒ ⊢ (((𝑊 ∈ oGrp ∧ 𝑊 ∈ Archi) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 0 < 𝑋) → ∃𝑛 ∈ ℕ 𝑌 < (𝑛 · 𝑋)) | ||
Theorem | archiabllem1a 31453* | Lemma for archiabl 31460: In case an archimedean group 𝑊 admits a smallest positive element 𝑈, then any positive element 𝑋 of 𝑊 can be written as (𝑛 · 𝑈) with 𝑛 ∈ ℕ. Since the reciprocal holds for negative elements, 𝑊 is then isomorphic to ℤ. (Contributed by Thierry Arnoux, 12-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥) → 𝑈 ≤ 𝑥) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈)) | ||
Theorem | archiabllem1b 31454* | Lemma for archiabl 31460. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥) → 𝑈 ≤ 𝑥) ⇒ ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ∃𝑛 ∈ ℤ 𝑦 = (𝑛 · 𝑈)) | ||
Theorem | archiabllem1 31455* | Archimedean ordered groups with a minimal positive value are abelian. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑈) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 0 < 𝑥) → 𝑈 ≤ 𝑥) ⇒ ⊢ (𝜑 → 𝑊 ∈ Abel) | ||
Theorem | archiabllem2a 31456* | Lemma for archiabl 31460, which requires the group to be both left- and right-ordered. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 0 < 𝑋) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ 𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) ≤ 𝑋)) | ||
Theorem | archiabllem2c 31457* | Lemma for archiabl 31460. (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ (𝑋 + 𝑌) < (𝑌 + 𝑋)) | ||
Theorem | archiabllem2b 31458* | Lemma for archiabl 31460. (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | archiabllem2 31459* | Archimedean ordered groups with no minimal positive value are abelian. (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ ≤ = (le‘𝑊) & ⊢ < = (lt‘𝑊) & ⊢ · = (.g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ oGrp) & ⊢ (𝜑 → 𝑊 ∈ Archi) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → (oppg‘𝑊) ∈ oGrp) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵 ∧ 0 < 𝑎) → ∃𝑏 ∈ 𝐵 ( 0 < 𝑏 ∧ 𝑏 < 𝑎)) ⇒ ⊢ (𝜑 → 𝑊 ∈ Abel) | ||
Theorem | archiabl 31460 | Archimedean left- and right- ordered groups are Abelian. (Contributed by Thierry Arnoux, 1-May-2018.) |
⊢ ((𝑊 ∈ oGrp ∧ (oppg‘𝑊) ∈ oGrp ∧ 𝑊 ∈ Archi) → 𝑊 ∈ Abel) | ||
Syntax | cslmd 31461 | Extend class notation with class of all semimodules. |
class SLMod | ||
Definition | df-slmd 31462* | Define the class of all (left) modules over semirings, i.e. semimodules, which are generalizations of left modules. A semimodule is a commutative monoid (=vectors) together with a semiring (=scalars) and a left scalar product connecting them. (0[,]+∞) for example is not a full fledged left module, but is a semimodule. Definition of [Golan] p. 149. (Contributed by Thierry Arnoux, 21-Mar-2018.) |
⊢ SLMod = {𝑔 ∈ CMnd ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][( ·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))} | ||
Theorem | isslmd 31463* | The predicate "is a semimodule". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ 𝐹 ∈ SRing ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 )))) | ||
Theorem | slmdlema 31464 | Lemma for properties of a semimodule. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) & ⊢ × = (.r‘𝐹) & ⊢ 1 = (1r‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (((𝑅 · 𝑌) ∈ 𝑉 ∧ (𝑅 · (𝑌 + 𝑋)) = ((𝑅 · 𝑌) + (𝑅 · 𝑋)) ∧ ((𝑄 ⨣ 𝑅) · 𝑌) = ((𝑄 · 𝑌) + (𝑅 · 𝑌))) ∧ (((𝑄 × 𝑅) · 𝑌) = (𝑄 · (𝑅 · 𝑌)) ∧ ( 1 · 𝑌) = 𝑌 ∧ (𝑂 · 𝑌) = 0 ))) | ||
Theorem | lmodslmd 31465 | Left semimodules generalize the notion of left modules. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ (𝑊 ∈ LMod → 𝑊 ∈ SLMod) | ||
Theorem | slmdcmn 31466 | A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ (𝑊 ∈ SLMod → 𝑊 ∈ CMnd) | ||
Theorem | slmdmnd 31467 | A semimodule is a monoid. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ (𝑊 ∈ SLMod → 𝑊 ∈ Mnd) | ||
Theorem | slmdsrg 31468 | The scalar component of a semimodule is a semiring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ SLMod → 𝐹 ∈ SRing) | ||
Theorem | slmdbn0 31469 | The base set of a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.) |
⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) | ||
Theorem | slmdacl 31470 | Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ + = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 + 𝑌) ∈ 𝐾) | ||
Theorem | slmdmcl 31471 | Closure of ring multiplication for a semimodule. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾) → (𝑋 · 𝑌) ∈ 𝐾) | ||
Theorem | slmdsn0 31472 | The set of scalars in a semimodule is nonempty. (Contributed by Thierry Arnoux, 1-Apr-2018.) (Proof shortened by AV, 10-Jan-2023.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ SLMod → 𝐵 ≠ ∅) | ||
Theorem | slmdvacl 31473 | Closure of vector addition for a semiring left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 + 𝑌) ∈ 𝑉) | ||
Theorem | slmdass 31474 | Semiring left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
Theorem | slmdvscl 31475 | Closure of scalar product for a semiring left module. (hvmulcl 29383 analog.) (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) | ||
Theorem | slmdvsdi 31476 | Distributive law for scalar product. (ax-hvdistr1 29378 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑅 · (𝑋 + 𝑌)) = ((𝑅 · 𝑋) + (𝑅 · 𝑌))) | ||
Theorem | slmdvsdir 31477 | Distributive law for scalar product. (ax-hvdistr1 29378 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ ⨣ = (+g‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 ⨣ 𝑅) · 𝑋) = ((𝑄 · 𝑋) + (𝑅 · 𝑋))) | ||
Theorem | slmdvsass 31478 | Associative law for scalar product. (ax-hvmulass 29377 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 22-Sep-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ × = (.r‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝑄 × 𝑅) · 𝑋) = (𝑄 · (𝑅 · 𝑋))) | ||
Theorem | slmd0cl 31479 | The ring zero in a semimodule belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) ⇒ ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝐾) | ||
Theorem | slmd1cl 31480 | The ring unit in a semiring left module belongs to the ring base set. (Contributed by NM, 11-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ (𝑊 ∈ SLMod → 1 ∈ 𝐾) | ||
Theorem | slmdvs1 31481 | Scalar product with ring unit. (ax-hvmulid 29376 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 1 = (1r‘𝐹) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) | ||
Theorem | slmd0vcl 31482 | The zero vector is a vector. (ax-hv0cl 29373 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝑊 ∈ SLMod → 0 ∈ 𝑉) | ||
Theorem | slmd0vlid 31483 | Left identity law for the zero vector. (hvaddid2 29393 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → ( 0 + 𝑋) = 𝑋) | ||
Theorem | slmd0vrid 31484 | Right identity law for the zero vector. (ax-hvaddid 29374 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑋 + 0 ) = 𝑋) | ||
Theorem | slmd0vs 31485 | Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (ax-hvmul0 29380 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑂 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉) → (𝑂 · 𝑋) = 0 ) | ||
Theorem | slmdvs0 31486 | Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 29394 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) |
⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) | ||
Theorem | gsumvsca1 31487* | Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐺 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ SLMod) & ⊢ (𝜑 → 𝑃 ∈ 𝐾) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑄 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = (𝑃 · (𝑊 Σg (𝑘 ∈ 𝐴 ↦ 𝑄)))) | ||
Theorem | gsumvsca2 31488* | Scalar product of a finite group sum for a left module over a semiring. (Contributed by Thierry Arnoux, 16-Mar-2018.) (Proof shortened by AV, 12-Dec-2019.) |
⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐺 = (Scalar‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ (𝜑 → 𝐾 ⊆ (Base‘𝐺)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ SLMod) & ⊢ (𝜑 → 𝑄 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑃 ∈ 𝐾) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑘 ∈ 𝐴 ↦ (𝑃 · 𝑄))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑃)) · 𝑄)) | ||
Theorem | prmsimpcyc 31489 | A group of prime order is cyclic if and only if it is simple. This is the first family of finite simple groups. (Contributed by Thierry Arnoux, 21-Sep-2023.) |
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((♯‘𝐵) ∈ ℙ → (𝐺 ∈ SimpGrp ↔ 𝐺 ∈ CycGrp)) | ||
Theorem | rngurd 31490* | Deduce the unit of a ring from its properties. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → · = (.r‘𝑅)) & ⊢ (𝜑 → 1 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ( 1 · 𝑥) = 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 1 ) = 𝑥) ⇒ ⊢ (𝜑 → 1 = (1r‘𝑅)) | ||
Theorem | dvdschrmulg 31491 | In a ring, any multiple of the characteristics annihilates all elements. (Contributed by Thierry Arnoux, 6-Sep-2016.) |
⊢ 𝐶 = (chr‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∥ 𝑁 ∧ 𝐴 ∈ 𝐵) → (𝑁 · 𝐴) = 0 ) | ||
Theorem | freshmansdream 31492 | For a prime number 𝑃, if 𝑋 and 𝑌 are members of a commutative ring 𝑅 of characteristic 𝑃, then ((𝑋 + 𝑌)↑𝑃) = ((𝑋↑𝑃) + (𝑌↑𝑃)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝑃 = (chr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ ℙ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝑌)) = ((𝑃 ↑ 𝑋) + (𝑃 ↑ 𝑌))) | ||
Theorem | frobrhm 31493* | In a commutative ring with prime characteristic, the Frobenius function 𝐹 is a ring endomorphism, thus named the Frobenius endomorphism. (Contributed by Thierry Arnoux, 31-May-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑃 = (chr‘𝑅) & ⊢ ↑ = (.g‘(mulGrp‘𝑅)) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑃 ↑ 𝑥)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑃 ∈ ℙ) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑅)) | ||
Theorem | ress1r 31494 | 1r is unaffected by restriction. This is a bit more generic than subrg1 20044. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 1 = (1r‘𝑆)) | ||
Theorem | dvrdir 31495 | Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ / = (/r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) | ||
Theorem | rdivmuldivd 31496 | Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊))) | ||
Theorem | ringinvval 31497* | The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ ∗ = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) = (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = 1 )) | ||
Theorem | dvrcan5 31498 | Cancellation law for common factor in ratio. (divcan5 11687 analog.) (Contributed by Thierry Arnoux, 26-Oct-2016.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) & ⊢ / = (/r‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑍) / (𝑌 · 𝑍)) = (𝑋 / 𝑌)) | ||
Theorem | subrgchr 31499 | If 𝐴 is a subring of 𝑅, then they have the same characteristic. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
⊢ (𝐴 ∈ (SubRing‘𝑅) → (chr‘(𝑅 ↾s 𝐴)) = (chr‘𝑅)) | ||
Theorem | rmfsupp2 31500* | A mapping of a multiplication of a constant with a function into a ring is finitely supported if the function is finitely supported. (Contributed by Thierry Arnoux, 3-Jun-2023.) |
⊢ 𝑅 = (Base‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Ring) & ⊢ (𝜑 → 𝑉 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → 𝐶 ∈ 𝑅) & ⊢ (𝜑 → 𝐴:𝑉⟶𝑅) & ⊢ (𝜑 → 𝐴 finSupp (0g‘𝑀)) ⇒ ⊢ (𝜑 → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)(.r‘𝑀)𝐶)) finSupp (0g‘𝑀)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |