HomeHome Metamath Proof Explorer
Theorem List (p. 315 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 31401-31500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremorngring 31401 An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018.)
(𝑅 ∈ oRing → 𝑅 ∈ Ring)
 
Theoremorngogrp 31402 An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018.)
(𝑅 ∈ oRing → 𝑅 ∈ oGrp)
 
Theoremisofld 31403 An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018.)
(𝐹 ∈ oField ↔ (𝐹 ∈ Field ∧ 𝐹 ∈ oRing))
 
Theoremorngmul 31404 In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018.)
𝐵 = (Base‘𝑅)    &    = (le‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ oRing ∧ (𝑋𝐵0 𝑋) ∧ (𝑌𝐵0 𝑌)) → 0 (𝑋 · 𝑌))
 
Theoremorngsqr 31405 In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018.)
𝐵 = (Base‘𝑅)    &    = (le‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ oRing ∧ 𝑋𝐵) → 0 (𝑋 · 𝑋))
 
Theoremornglmulle 31406 In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ oRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &    = (le‘𝑅)    &   (𝜑𝑋 𝑌)    &   (𝜑0 𝑍)       (𝜑 → (𝑍 · 𝑋) (𝑍 · 𝑌))
 
Theoremorngrmulle 31407 In an ordered ring, multiplication with a positive does not change comparison. (Contributed by Thierry Arnoux, 10-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ oRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &    = (le‘𝑅)    &   (𝜑𝑋 𝑌)    &   (𝜑0 𝑍)       (𝜑 → (𝑋 · 𝑍) (𝑌 · 𝑍))
 
Theoremornglmullt 31408 In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ oRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &    < = (lt‘𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋 < 𝑌)    &   (𝜑0 < 𝑍)       (𝜑 → (𝑍 · 𝑋) < (𝑍 · 𝑌))
 
Theoremorngrmullt 31409 In an ordered ring, multiplication with a positive does not change strict comparison. (Contributed by Thierry Arnoux, 9-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ oRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &    < = (lt‘𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋 < 𝑌)    &   (𝜑0 < 𝑍)       (𝜑 → (𝑋 · 𝑍) < (𝑌 · 𝑍))
 
Theoremorngmullt 31410 In an ordered ring, the strict ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 9-Sep-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &    < = (lt‘𝑅)    &   (𝜑𝑅 ∈ oRing)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑0 < 𝑋)    &   (𝜑0 < 𝑌)       (𝜑0 < (𝑋 · 𝑌))
 
Theoremofldfld 31411 An ordered field is a field. (Contributed by Thierry Arnoux, 20-Jan-2018.)
(𝐹 ∈ oField → 𝐹 ∈ Field)
 
Theoremofldtos 31412 An ordered field is a totally ordered set. (Contributed by Thierry Arnoux, 20-Jan-2018.)
(𝐹 ∈ oField → 𝐹 ∈ Toset)
 
Theoremorng0le1 31413 In an ordered ring, the ring unit is positive. (Contributed by Thierry Arnoux, 21-Jan-2018.)
0 = (0g𝐹)    &    1 = (1r𝐹)    &    = (le‘𝐹)       (𝐹 ∈ oRing → 0 1 )
 
Theoremofldlt1 31414 In an ordered field, the ring unit is strictly positive. (Contributed by Thierry Arnoux, 21-Jan-2018.)
0 = (0g𝐹)    &    1 = (1r𝐹)    &    < = (lt‘𝐹)       (𝐹 ∈ oField → 0 < 1 )
 
Theoremofldchr 31415 The characteristic of an ordered field is zero. (Contributed by Thierry Arnoux, 21-Jan-2018.) (Proof shortened by AV, 6-Oct-2020.)
(𝐹 ∈ oField → (chr‘𝐹) = 0)
 
Theoremsuborng 31416 Every subring of an ordered ring is also an ordered ring. (Contributed by Thierry Arnoux, 21-Jan-2018.)
((𝑅 ∈ oRing ∧ (𝑅s 𝐴) ∈ Ring) → (𝑅s 𝐴) ∈ oRing)
 
Theoremsubofld 31417 Every subfield of an ordered field is also an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.)
((𝐹 ∈ oField ∧ (𝐹s 𝐴) ∈ Field) → (𝐹s 𝐴) ∈ oField)
 
Theoremisarchiofld 31418* Axiom of Archimedes : a characterization of the Archimedean property for ordered fields. (Contributed by Thierry Arnoux, 9-Apr-2018.)
𝐵 = (Base‘𝑊)    &   𝐻 = (ℤRHom‘𝑊)    &    < = (lt‘𝑊)       (𝑊 ∈ oField → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑛 ∈ ℕ 𝑥 < (𝐻𝑛)))
 
20.3.9.17  Ring homomorphisms - misc additions
 
Theoremrhmdvdsr 31419 A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.)
𝑋 = (Base‘𝑅)    &    = (∥r𝑅)    &    / = (∥r𝑆)       (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴 𝐵) → (𝐹𝐴) / (𝐹𝐵))
 
Theoremrhmopp 31420 A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
(𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
 
Theoremelrhmunit 31421 Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
 
Theoremrhmdvd 31422 A ring homomorphism preserves ratios. (Contributed by Thierry Arnoux, 22-Oct-2017.)
𝑈 = (Unit‘𝑆)    &   𝑋 = (Base‘𝑅)    &    / = (/r𝑆)    &    · = (.r𝑅)       ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋) ∧ ((𝐹𝐵) ∈ 𝑈 ∧ (𝐹𝐶) ∈ 𝑈)) → ((𝐹𝐴) / (𝐹𝐵)) = ((𝐹‘(𝐴 · 𝐶)) / (𝐹‘(𝐵 · 𝐶))))
 
Theoremrhmunitinv 31423 Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr𝑅)‘𝐴)) = ((invr𝑆)‘(𝐹𝐴)))
 
Theoremkerunit 31424 If a unit element lies in the kernel of a ring homomorphism, then 0 = 1, i.e. the target ring is the zero ring. (Contributed by Thierry Arnoux, 24-Oct-2017.)
𝑈 = (Unit‘𝑅)    &    0 = (0g𝑆)    &    1 = (1r𝑆)       ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ (𝑈 ∩ (𝐹 “ { 0 })) ≠ ∅) → 1 = 0 )
 
20.3.9.18  Scalar restriction operation
 
Syntaxcresv 31425 Extend class notation with the scalar restriction operation.
class v
 
Definitiondf-resv 31426* Define an operator to restrict the scalar field component of an extended structure. (Contributed by Thierry Arnoux, 5-Sep-2018.)
v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)))
 
Theoremreldmresv 31427 The scalar restriction is a proper operator, so it can be used with ovprc1 7294. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Rel dom ↾v
 
Theoremresvval 31428 Value of structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
𝑅 = (𝑊v 𝐴)    &   𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)       ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
 
Theoremresvid2 31429 General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
𝑅 = (𝑊v 𝐴)    &   𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)       ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
 
Theoremresvval2 31430 Value of nontrivial structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
𝑅 = (𝑊v 𝐴)    &   𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)       ((¬ 𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩))
 
Theoremresvsca 31431 Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
𝑅 = (𝑊v 𝐴)    &   𝐹 = (Scalar‘𝑊)    &   𝐵 = (Base‘𝐹)       (𝐴𝑉 → (𝐹s 𝐴) = (Scalar‘𝑅))
 
Theoremresvlem 31432 Other elements of a scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.)
𝑅 = (𝑊v 𝐴)    &   𝐶 = (𝐸𝑊)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ (Scalar‘ndx)       (𝐴𝑉𝐶 = (𝐸𝑅))
 
TheoremresvlemOLD 31433 Obsolete version of resvlem 31432 as of 31-Oct-2024. Other elements of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑅 = (𝑊v 𝐴)    &   𝐶 = (𝐸𝑊)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   𝑁 ≠ 5       (𝐴𝑉𝐶 = (𝐸𝑅))
 
Theoremresvbas 31434 Base is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.)
𝐻 = (𝐺v 𝐴)    &   𝐵 = (Base‘𝐺)       (𝐴𝑉𝐵 = (Base‘𝐻))
 
TheoremresvbasOLD 31435 Obsolete proof of resvbas 31434 as of 31-Oct-2024. Base is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐻 = (𝐺v 𝐴)    &   𝐵 = (Base‘𝐺)       (𝐴𝑉𝐵 = (Base‘𝐻))
 
Theoremresvplusg 31436 +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.)
𝐻 = (𝐺v 𝐴)    &    + = (+g𝐺)       (𝐴𝑉+ = (+g𝐻))
 
TheoremresvplusgOLD 31437 Obsolete proof of resvplusg 31436 as of 31-Oct-2024. +g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐻 = (𝐺v 𝐴)    &    + = (+g𝐺)       (𝐴𝑉+ = (+g𝐻))
 
Theoremresvvsca 31438 ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Proof shortened by AV, 31-Oct-2024.)
𝐻 = (𝐺v 𝐴)    &    · = ( ·𝑠𝐺)       (𝐴𝑉· = ( ·𝑠𝐻))
 
TheoremresvvscaOLD 31439 Obsolete proof of resvvsca 31438 as of 31-Oct-2024. ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐻 = (𝐺v 𝐴)    &    · = ( ·𝑠𝐺)       (𝐴𝑉· = ( ·𝑠𝐻))
 
Theoremresvmulr 31440 .r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (Revised by AV, 31-Oct-2024.)
𝐻 = (𝐺v 𝐴)    &    · = (.r𝐺)       (𝐴𝑉· = (.r𝐻))
 
TheoremresvmulrOLD 31441 Obsolete proof of resvmulr 31440 as of 31-Oct-2024. ·𝑠 is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐻 = (𝐺v 𝐴)    &    · = (.r𝐺)       (𝐴𝑉· = (.r𝐻))
 
Theoremresv0g 31442 0g is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
𝐻 = (𝐺v 𝐴)    &    0 = (0g𝐺)       (𝐴𝑉0 = (0g𝐻))
 
Theoremresv1r 31443 1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
𝐻 = (𝐺v 𝐴)    &    1 = (1r𝐺)       (𝐴𝑉1 = (1r𝐻))
 
Theoremresvcmn 31444 Scalar restriction preserves commutative monoids. (Contributed by Thierry Arnoux, 6-Sep-2018.)
𝐻 = (𝐺v 𝐴)       (𝐴𝑉 → (𝐺 ∈ CMnd ↔ 𝐻 ∈ CMnd))
 
20.3.9.19  The commutative ring of gaussian integers
 
Theoremgzcrng 31445 The gaussian integers form a commutative ring. (Contributed by Thierry Arnoux, 18-Mar-2018.)
(ℂflds ℤ[i]) ∈ CRing
 
20.3.9.20  The archimedean ordered field of real numbers
 
Theoremreofld 31446 The real numbers form an ordered field. (Contributed by Thierry Arnoux, 21-Jan-2018.)
fld ∈ oField
 
Theoremnn0omnd 31447 The nonnegative integers form an ordered monoid. (Contributed by Thierry Arnoux, 23-Mar-2018.)
(ℂflds0) ∈ oMnd
 
Theoremrearchi 31448 The field of the real numbers is Archimedean. See also arch 12160. (Contributed by Thierry Arnoux, 9-Apr-2018.)
fld ∈ Archi
 
Theoremnn0archi 31449 The monoid of the nonnegative integers is Archimedean. (Contributed by Thierry Arnoux, 16-Sep-2018.)
(ℂflds0) ∈ Archi
 
Theoremxrge0slmod 31450 The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018.)
𝐺 = (ℝ*𝑠s (0[,]+∞))    &   𝑊 = (𝐺v (0[,)+∞))       𝑊 ∈ SLMod
 
20.3.9.21  The quotient map and quotient modules
 
Theoremqusker 31451* The kernel of a quotient map. (Contributed by Thierry Arnoux, 20-May-2023.)
𝑉 = (Base‘𝑀)    &   𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))    &   𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))    &    0 = (0g𝑁)       (𝐺 ∈ (NrmSGrp‘𝑀) → (𝐹 “ { 0 }) = 𝐺)
 
Theoremeqgvscpbl 31452 The left coset equivalence relation is compatible with the scalar multiplication operation. (Contributed by Thierry Arnoux, 18-May-2023.)
𝐵 = (Base‘𝑀)    &    = (𝑀 ~QG 𝐺)    &   𝑆 = (Base‘(Scalar‘𝑀))    &    · = ( ·𝑠𝑀)    &   (𝜑𝑀 ∈ LMod)    &   (𝜑𝐺 ∈ (LSubSp‘𝑀))    &   (𝜑𝐾𝑆)       (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))
 
Theoremqusvscpbl 31453* The quotient map distributes over the scalar multiplication. (Contributed by Thierry Arnoux, 18-May-2023.)
𝐵 = (Base‘𝑀)    &    = (𝑀 ~QG 𝐺)    &   𝑆 = (Base‘(Scalar‘𝑀))    &    · = ( ·𝑠𝑀)    &   (𝜑𝑀 ∈ LMod)    &   (𝜑𝐺 ∈ (LSubSp‘𝑀))    &   (𝜑𝐾𝑆)    &   𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))    &    = ( ·𝑠𝑁)    &   𝐹 = (𝑥𝐵 ↦ [𝑥](𝑀 ~QG 𝐺))    &   (𝜑𝑈𝐵)    &   (𝜑𝑉𝐵)       (𝜑 → ((𝐹𝑈) = (𝐹𝑉) → (𝐹‘(𝐾 · 𝑈)) = (𝐹‘(𝐾 · 𝑉))))
 
Theoremqusscaval 31454 Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023.)
𝐵 = (Base‘𝑀)    &    = (𝑀 ~QG 𝐺)    &   𝑆 = (Base‘(Scalar‘𝑀))    &    · = ( ·𝑠𝑀)    &   (𝜑𝑀 ∈ LMod)    &   (𝜑𝐺 ∈ (LSubSp‘𝑀))    &   (𝜑𝐾𝑆)    &   𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))    &    = ( ·𝑠𝑁)       ((𝜑𝐾𝑆𝑋𝐵) → (𝐾 [𝑋](𝑀 ~QG 𝐺)) = [(𝐾 · 𝑋)](𝑀 ~QG 𝐺))
 
Theoremimaslmod 31455* The image structure of a left module is a left module. (Contributed by Thierry Arnoux, 15-May-2023.)
(𝜑𝑁 = (𝐹s 𝑀))    &   𝑉 = (Base‘𝑀)    &   𝑆 = (Base‘(Scalar‘𝑀))    &    + = (+g𝑀)    &    · = ( ·𝑠𝑀)    &    0 = (0g𝑀)    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   ((𝜑 ∧ (𝑘𝑆𝑎𝑉𝑏𝑉)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘 · 𝑎)) = (𝐹‘(𝑘 · 𝑏))))    &   (𝜑𝑀 ∈ LMod)       (𝜑𝑁 ∈ LMod)
 
Theoremquslmod 31456 If 𝐺 is a submodule in 𝑀, then 𝑁 = 𝑀 / 𝐺 is a left module, called the quotient module of 𝑀 by 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.)
𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))    &   𝑉 = (Base‘𝑀)    &   (𝜑𝑀 ∈ LMod)    &   (𝜑𝐺 ∈ (LSubSp‘𝑀))       (𝜑𝑁 ∈ LMod)
 
Theoremquslmhm 31457* If 𝐺 is a submodule of 𝑀, then the "natural map" from elements to their cosets is a left module homomorphism from 𝑀 to 𝑀 / 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.)
𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))    &   𝑉 = (Base‘𝑀)    &   (𝜑𝑀 ∈ LMod)    &   (𝜑𝐺 ∈ (LSubSp‘𝑀))    &   𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))       (𝜑𝐹 ∈ (𝑀 LMHom 𝑁))
 
Theoremecxpid 31458 The equivalence class of a cartesian product is the whole set. (Contributed by Thierry Arnoux, 15-Jan-2024.)
(𝑋𝐴 → [𝑋](𝐴 × 𝐴) = 𝐴)
 
Theoremeqg0el 31459 Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
= (𝐺 ~QG 𝐻)       ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻𝑋𝐻))
 
Theoremqsxpid 31460 The quotient set of a cartesian product is trivial. (Contributed by Thierry Arnoux, 16-Jan-2024.)
(𝐴 ≠ ∅ → (𝐴 / (𝐴 × 𝐴)) = {𝐴})
 
Theoremqusxpid 31461 The Group quotient equivalence relation for the whole group is the cartesian product, i.e. all elements are in the same equivalence class. (Contributed by Thierry Arnoux, 16-Jan-2024.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Grp → (𝐺 ~QG 𝐵) = (𝐵 × 𝐵))
 
Theoremqustriv 31462 The quotient of a group 𝐺 by itself is trivial. (Contributed by Thierry Arnoux, 15-Jan-2024.)
𝐵 = (Base‘𝐺)    &   𝑄 = (𝐺 /s (𝐺 ~QG 𝐵))       (𝐺 ∈ Grp → (Base‘𝑄) = {𝐵})
 
Theoremqustrivr 31463 Converse of qustriv 31462. (Contributed by Thierry Arnoux, 15-Jan-2024.)
𝐵 = (Base‘𝐺)    &   𝑄 = (𝐺 /s (𝐺 ~QG 𝐻))       ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺) ∧ (Base‘𝑄) = {𝐻}) → 𝐻 = 𝐵)
 
20.3.9.22  The ring of integers modulo ` N `
 
Theoremznfermltl 31464 Fermat's little theorem in ℤ/n. (Contributed by Thierry Arnoux, 24-Jul-2024.)
𝑍 = (ℤ/nℤ‘𝑃)    &   𝐵 = (Base‘𝑍)    &    = (.g‘(mulGrp‘𝑍))       ((𝑃 ∈ ℙ ∧ 𝐴𝐵) → (𝑃 𝐴) = 𝐴)
 
20.3.9.23  Independent sets and families
 
Theoremislinds5 31465* A set is linearly independent if and only if it has no non-trivial representations of zero. (Contributed by Thierry Arnoux, 18-May-2023.)
𝐵 = (Base‘𝑊)    &   𝐾 = (Base‘𝐹)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑂 = (0g𝑊)    &    0 = (0g𝐹)       ((𝑊 ∈ LMod ∧ 𝑉𝐵) → (𝑉 ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐾m 𝑉)((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))) = 𝑂) → 𝑎 = (𝑉 × { 0 }))))
 
Theoremellspds 31466* Variation on ellspd 20919. (Contributed by Thierry Arnoux, 18-May-2023.)
𝑁 = (LSpan‘𝑀)    &   𝐵 = (Base‘𝑀)    &   𝐾 = (Base‘𝑆)    &   𝑆 = (Scalar‘𝑀)    &    0 = (0g𝑆)    &    · = ( ·𝑠𝑀)    &   (𝜑𝑀 ∈ LMod)    &   (𝜑𝑉𝐵)       (𝜑 → (𝑋 ∈ (𝑁𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
 
Theorem0ellsp 31467 Zero is in all spans. (Contributed by Thierry Arnoux, 8-May-2023.)
0 = (0g𝑊)    &   𝐵 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑆𝐵) → 0 ∈ (𝑁𝑆))
 
Theorem0nellinds 31468 The group identity cannot be an element of an independent set. (Contributed by Thierry Arnoux, 8-May-2023.)
0 = (0g𝑊)       ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ¬ 0𝐹)
 
Theoremrspsnel 31469* Membership in a principal ideal. Analogous to lspsnel 20180. (Contributed by Thierry Arnoux, 15-Jan-2024.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝐾 = (RSpan‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝐼 ∈ (𝐾‘{𝑋}) ↔ ∃𝑥𝐵 𝐼 = (𝑥 · 𝑋)))
 
Theoremrspsnid 31470 A principal ideal contains the element that generates it. (Contributed by Thierry Arnoux, 15-Jan-2024.)
𝐵 = (Base‘𝑅)    &   𝐾 = (RSpan‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐺𝐵) → 𝐺 ∈ (𝐾‘{𝐺}))
 
Theoremelrsp 31471* Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024.)
𝑁 = (RSpan‘𝑅)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝐵)       (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
 
Theoremrspidlid 31472 The ideal span of an ideal is the ideal itself. (Contributed by Thierry Arnoux, 1-Jun-2024.)
𝐾 = (RSpan‘𝑅)    &   𝑈 = (LIdeal‘𝑅)       ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (𝐾𝐼) = 𝐼)
 
Theorempidlnz 31473 A principal ideal generated by a nonzero element is not the zero ideal. (Contributed by Thierry Arnoux, 11-Apr-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐾 = (RSpan‘𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑋0 ) → (𝐾‘{𝑋}) ≠ { 0 })
 
Theoremlbslsp 31474* Any element of a left module 𝑀 can be expressed as a linear combination of the elements of a basis 𝑉 of 𝑀. (Contributed by Thierry Arnoux, 3-Aug-2023.)
𝐵 = (Base‘𝑀)    &   𝐾 = (Base‘𝑆)    &   𝑆 = (Scalar‘𝑀)    &    0 = (0g𝑆)    &    · = ( ·𝑠𝑀)    &   (𝜑𝑀 ∈ LMod)    &   (𝜑𝑉 ∈ (LBasis‘𝑀))       (𝜑 → (𝑋𝐵 ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
 
Theoremlindssn 31475 Any singleton of a nonzero element is an independent set. (Contributed by Thierry Arnoux, 5-Aug-2023.)
𝐵 = (Base‘𝑊)    &    0 = (0g𝑊)       ((𝑊 ∈ LVec ∧ 𝑋𝐵𝑋0 ) → {𝑋} ∈ (LIndS‘𝑊))
 
Theoremlindflbs 31476 Conditions for an independent family to be a basis. (Contributed by Thierry Arnoux, 21-Jul-2023.)
𝐵 = (Base‘𝑊)    &   𝐾 = (Base‘𝐹)    &   𝑆 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝑂 = (0g𝑊)    &    0 = (0g𝑆)    &   𝑁 = (LSpan‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑆 ∈ NzRing)    &   (𝜑𝐼𝑉)    &   (𝜑𝐹:𝐼1-1𝐵)       (𝜑 → (ran 𝐹 ∈ (LBasis‘𝑊) ↔ (𝐹 LIndF 𝑊 ∧ (𝑁‘ran 𝐹) = 𝐵)))
 
Theoremlinds2eq 31477 Deduce equality of elements in an independent set. (Contributed by Thierry Arnoux, 18-Jul-2023.)
𝐹 = (Base‘(Scalar‘𝑊))    &    · = ( ·𝑠𝑊)    &    + = (+g𝑊)    &    0 = (0g‘(Scalar‘𝑊))    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝐵 ∈ (LIndS‘𝑊))    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐾𝐹)    &   (𝜑𝐿𝐹)    &   (𝜑𝐾0 )    &   (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))       (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))
 
Theoremlindfpropd 31478* Property deduction for linearly independent families. (Contributed by Thierry Arnoux, 16-Jul-2023.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿)))    &   (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))    &   ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))    &   ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)    &   (𝜑𝑋𝐴)       (𝜑 → (𝑋 LIndF 𝐾𝑋 LIndF 𝐿))
 
Theoremlindspropd 31479* Property deduction for linearly independent sets. (Contributed by Thierry Arnoux, 16-Jul-2023.)
(𝜑 → (Base‘𝐾) = (Base‘𝐿))    &   (𝜑 → (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐿)))    &   (𝜑 → (0g‘(Scalar‘𝐾)) = (0g‘(Scalar‘𝐿)))    &   ((𝜑 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) ∈ (Base‘𝐾))    &   ((𝜑 ∧ (𝑥 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))    &   (𝜑𝐾𝑉)    &   (𝜑𝐿𝑊)       (𝜑 → (LIndS‘𝐾) = (LIndS‘𝐿))
 
20.3.9.24  Subgroup sum / Sumset / Minkowski sum

The sumset (also called the Minkowski sum) of two subsets 𝐴 and 𝐵, is defined to be the set of all sums of an element from 𝐴 with an element from 𝐵.

The sumset operation can be used for both group (additive) operations and ring (multiplicative) operations.

 
Theoremelgrplsmsn 31480* Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (LSSum‘𝐺)    &   (𝜑𝐺𝑉)    &   (𝜑𝐴𝐵)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑍 ∈ (𝐴 {𝑋}) ↔ ∃𝑥𝐴 𝑍 = (𝑥 + 𝑋)))
 
Theoremlsmsnorb 31481* The sumset of a group with a single element is the element's orbit by the group action. See gaorb 18828. (Contributed by Thierry Arnoux, 21-Jan-2024.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (LSSum‘𝐺)    &    = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔 + 𝑥) = 𝑦)}    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐴𝐵)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐴 {𝑋}) = [𝑋] )
 
Theoremlsmsnorb2 31482* The sumset of a single element with a group is the element's orbit by the group action. See gaorb 18828. (Contributed by Thierry Arnoux, 24-Jul-2024.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    = (LSSum‘𝐺)    &    = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)}    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐴𝐵)    &   (𝜑𝑋𝐵)       (𝜑 → ({𝑋} 𝐴) = [𝑋] )
 
Theoremelringlsm 31483* Membership in a product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    × = (LSSum‘𝐺)    &   (𝜑𝐸𝐵)    &   (𝜑𝐹𝐵)       (𝜑 → (𝑍 ∈ (𝐸 × 𝐹) ↔ ∃𝑥𝐸𝑦𝐹 𝑍 = (𝑥 · 𝑦)))
 
Theoremelringlsmd 31484 Membership in a product of two subsets of a ring, one direction. (Contributed by Thierry Arnoux, 13-Apr-2024.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    × = (LSSum‘𝐺)    &   (𝜑𝐸𝐵)    &   (𝜑𝐹𝐵)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐹)       (𝜑 → (𝑋 · 𝑌) ∈ (𝐸 × 𝐹))
 
Theoremringlsmss 31485 Closure of the product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    × = (LSSum‘𝐺)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐸𝐵)    &   (𝜑𝐹𝐵)       (𝜑 → (𝐸 × 𝐹) ⊆ 𝐵)
 
Theoremringlsmss1 31486 The product of an ideal 𝐼 of a commutative ring 𝑅 with some set E is a subset of the ideal. (Contributed by Thierry Arnoux, 8-Jun-2024.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    × = (LSSum‘𝐺)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐸𝐵)    &   (𝜑𝐼 ∈ (LIdeal‘𝑅))       (𝜑 → (𝐼 × 𝐸) ⊆ 𝐼)
 
Theoremringlsmss2 31487 The product with an ideal of a ring is a subset of that ideal. (Contributed by Thierry Arnoux, 2-Jun-2024.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    × = (LSSum‘𝐺)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐸𝐵)    &   (𝜑𝐼 ∈ (LIdeal‘𝑅))       (𝜑 → (𝐸 × 𝐼) ⊆ 𝐼)
 
Theoremlsmsnpridl 31488 The product of the ring with a single element is equal to the principal ideal generated by that element. (Contributed by Thierry Arnoux, 21-Jan-2024.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    × = (LSSum‘𝐺)    &   𝐾 = (RSpan‘𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐵 × {𝑋}) = (𝐾‘{𝑋}))
 
Theoremlsmsnidl 31489 The product of the ring with a single element is a principal ideal. (Contributed by Thierry Arnoux, 21-Jan-2024.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    × = (LSSum‘𝐺)    &   𝐾 = (RSpan‘𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐵 × {𝑋}) ∈ (LPIdeal‘𝑅))
 
Theoremlsmidllsp 31490 The sum of two ideals is the ideal generated by their union. (Contributed by Thierry Arnoux, 21-Jan-2024.)
𝐵 = (Base‘𝑅)    &    = (LSSum‘𝑅)    &   𝐾 = (RSpan‘𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼 ∈ (LIdeal‘𝑅))    &   (𝜑𝐽 ∈ (LIdeal‘𝑅))       (𝜑 → (𝐼 𝐽) = (𝐾‘(𝐼𝐽)))
 
Theoremlsmidl 31491 The sum of two ideals is an ideal. (Contributed by Thierry Arnoux, 21-Jan-2024.)
𝐵 = (Base‘𝑅)    &    = (LSSum‘𝑅)    &   𝐾 = (RSpan‘𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼 ∈ (LIdeal‘𝑅))    &   (𝜑𝐽 ∈ (LIdeal‘𝑅))       (𝜑 → (𝐼 𝐽) ∈ (LIdeal‘𝑅))
 
Theoremlsmssass 31492 Group sum is associative, subset version (see lsmass 19190). (Contributed by Thierry Arnoux, 1-Jun-2024.)
= (LSSum‘𝐺)    &   𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑅𝐵)    &   (𝜑𝑇𝐵)    &   (𝜑𝑈𝐵)       (𝜑 → ((𝑅 𝑇) 𝑈) = (𝑅 (𝑇 𝑈)))
 
Theoremgrplsm0l 31493 Sumset with the identity singleton is the original set. (Contributed by Thierry Arnoux, 27-Jul-2024.)
𝐵 = (Base‘𝐺)    &    = (LSSum‘𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝐴𝐵𝐴 ≠ ∅) → ({ 0 } 𝐴) = 𝐴)
 
Theoremgrplsmid 31494 The direct sum of an element 𝑋 of a subgroup 𝐴 is the subgroup itself. (Contributed by Thierry Arnoux, 27-Jul-2024.)
= (LSSum‘𝐺)       ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑋𝐴) → ({𝑋} 𝐴) = 𝐴)
 
20.3.9.25  The quotient map
 
Theoremquslsm 31495 Express the image by the quotient map in terms of direct sum. (Contributed by Thierry Arnoux, 27-Jul-2024.)
𝐵 = (Base‘𝐺)    &    = (LSSum‘𝐺)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋𝐵)       (𝜑 → [𝑋](𝐺 ~QG 𝑆) = ({𝑋} 𝑆))
 
Theoremqusima 31496* The image of a subgroup by the natural map from elements to their cosets. (Contributed by Thierry Arnoux, 27-Jul-2024.)
𝐵 = (Base‘𝐺)    &   𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))    &    = (LSSum‘𝐺)    &   𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))    &   𝐹 = (𝑥𝐵 ↦ [𝑥](𝐺 ~QG 𝑁))    &   (𝜑𝑁 ∈ (NrmSGrp‘𝐺))    &   (𝜑𝐻𝑆)    &   (𝜑𝑆 ⊆ (SubGrp‘𝐺))       (𝜑 → (𝐸𝐻) = (𝐹𝐻))
 
Theoremnsgqus0 31497 A normal subgroup 𝑁 is a member of all subgroups 𝐹 of the quotient group by 𝑁. In fact, it is the identity element of the quotient group. (Contributed by Thierry Arnoux, 27-Jul-2024.)
𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))       ((𝑁 ∈ (NrmSGrp‘𝐺) ∧ 𝐹 ∈ (SubGrp‘𝑄)) → 𝑁𝐹)
 
Theoremnsgmgclem 31498* Lemma for nsgmgc 31499. (Contributed by Thierry Arnoux, 27-Jul-2024.)
𝐵 = (Base‘𝐺)    &   𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))    &    = (LSSum‘𝐺)    &   (𝜑𝑁 ∈ (NrmSGrp‘𝐺))    &   (𝜑𝐹 ∈ (SubGrp‘𝑄))       (𝜑 → {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝐹} ∈ (SubGrp‘𝐺))
 
Theoremnsgmgc 31499* There is a monotone Galois connection between the lattice of subgroups of a group 𝐺 containing a normal subgroup 𝑁 and the lattice of subgroups of the quotient group 𝐺 / 𝑁. This is sometimes called the lattice theorem. (Contributed by Thierry Arnoux, 27-Jul-2024.)
𝐵 = (Base‘𝐺)    &   𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}    &   𝑇 = (SubGrp‘𝑄)    &   𝐽 = (𝑉MGalConn𝑊)    &   𝑉 = (toInc‘𝑆)    &   𝑊 = (toInc‘𝑇)    &   𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))    &    = (LSSum‘𝐺)    &   𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))    &   𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})    &   (𝜑𝑁 ∈ (NrmSGrp‘𝐺))       (𝜑𝐸𝐽𝐹)
 
Theoremnsgqusf1olem1 31500* Lemma for nsgqusf1o 31503. (Contributed by Thierry Arnoux, 4-Aug-2024.)
𝐵 = (Base‘𝐺)    &   𝑆 = { ∈ (SubGrp‘𝐺) ∣ 𝑁}    &   𝑇 = (SubGrp‘𝑄)    &    = (le‘(toInc‘𝑆))    &    = (le‘(toInc‘𝑇))    &   𝑄 = (𝐺 /s (𝐺 ~QG 𝑁))    &    = (LSSum‘𝐺)    &   𝐸 = (𝑆 ↦ ran (𝑥 ↦ ({𝑥} 𝑁)))    &   𝐹 = (𝑓𝑇 ↦ {𝑎𝐵 ∣ ({𝑎} 𝑁) ∈ 𝑓})    &   (𝜑𝑁 ∈ (NrmSGrp‘𝐺))       (((𝜑 ∈ (SubGrp‘𝐺)) ∧ 𝑁) → ran (𝑥 ↦ ({𝑥} 𝑁)) ∈ 𝑇)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >