![]() |
Metamath
Proof Explorer Theorem List (p. 315 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43657) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bnj219 31401 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) | ||
Theorem | bnj226 31402* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 | ||
Theorem | bnj228 31403 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜓) | ||
Theorem | bnj519 31404 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∈ V → Fun {〈𝐴, 𝐵〉}) | ||
Theorem | bnj521 31405 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝐴 ∩ {𝐴}) = ∅ | ||
Theorem | bnj524 31406 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) | ||
Theorem | bnj525 31407* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | bnj534 31408* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 → (∃𝑥𝜑 ∧ 𝜓)) ⇒ ⊢ (𝜒 → ∃𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | bnj538 31409* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) (Proof shortened by OpenAI, 30-Mar-2020.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑦]∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 [𝐴 / 𝑦]𝜑) | ||
Theorem | bnj529 31410 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ (𝑀 ∈ 𝐷 → ∅ ∈ 𝑀) | ||
Theorem | bnj551 31411 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) | ||
Theorem | bnj563 31412 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) & ⊢ (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) ⇒ ⊢ ((𝜂 ∧ 𝜌) → suc 𝑖 ∈ 𝑚) | ||
Theorem | bnj564 31413 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) ⇒ ⊢ (𝜏 → dom 𝑓 = 𝑚) | ||
Theorem | bnj593 31414 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥𝜒) | ||
Theorem | bnj596 31415 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | bnj610 31416* | Pass from equality (𝑥 = 𝐴) to substitution ([𝐴 / 𝑥]) without the distinct variable restriction ($d 𝐴 𝑥). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓′)) & ⊢ (𝑦 = 𝐴 → (𝜓′ ↔ 𝜓)) ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | bnj642 31417 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜑) | ||
Theorem | bnj643 31418 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜓) | ||
Theorem | bnj645 31419 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜃) | ||
Theorem | bnj658 31420 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜑 ∧ 𝜓 ∧ 𝜒)) | ||
Theorem | bnj667 31421 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | bnj705 31422 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | bnj706 31423 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜓 → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | bnj707 31424 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | bnj708 31425 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜃 → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | bnj721 31426 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) | ||
Theorem | bnj832 31427 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj835 31428 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj836 31429 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) & ⊢ (𝜓 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj837 31430 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) & ⊢ (𝜒 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj769 31431 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj770 31432 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) & ⊢ (𝜓 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj771 31433 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜂 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) & ⊢ (𝜒 → 𝜏) ⇒ ⊢ (𝜂 → 𝜏) | ||
Theorem | bnj887 31434 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ 𝜑′) & ⊢ (𝜓 ↔ 𝜓′) & ⊢ (𝜒 ↔ 𝜒′) & ⊢ (𝜃 ↔ 𝜃′) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝜒′ ∧ 𝜃′)) | ||
Theorem | bnj918 31435 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) ⇒ ⊢ 𝐺 ∈ V | ||
Theorem | bnj919 31436* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝐹 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) & ⊢ (𝜑′ ↔ [𝑃 / 𝑛]𝜑) & ⊢ (𝜓′ ↔ [𝑃 / 𝑛]𝜓) & ⊢ (𝜒′ ↔ [𝑃 / 𝑛]𝜒) & ⊢ 𝑃 ∈ V ⇒ ⊢ (𝜒′ ↔ (𝑃 ∈ 𝐷 ∧ 𝐹 Fn 𝑃 ∧ 𝜑′ ∧ 𝜓′)) | ||
Theorem | bnj923 31437 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ (𝑛 ∈ 𝐷 → 𝑛 ∈ ω) | ||
Theorem | bnj927 31438 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) | ||
Theorem | bnj930 31439 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) ⇒ ⊢ (𝜑 → Fun 𝐹) | ||
Theorem | bnj931 31440 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ 𝐵 ⊆ 𝐴 | ||
Theorem | bnj937 31441* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | bnj941 31442 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) ⇒ ⊢ (𝐶 ∈ V → ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)) | ||
Theorem | bnj945 31443 | Technical lemma for bnj69 31677. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) ⇒ ⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝐴 ∈ 𝑛) → (𝐺‘𝐴) = (𝑓‘𝐴)) | ||
Theorem | bnj946 31444 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
Theorem | bnj951 31445 | ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜏 → 𝜑) & ⊢ (𝜏 → 𝜓) & ⊢ (𝜏 → 𝜒) & ⊢ (𝜏 → 𝜃) ⇒ ⊢ (𝜏 → (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | bnj956 31446 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝐴 = 𝐵 → ∀𝑥 𝐴 = 𝐵) ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | bnj976 31447* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 ↔ (𝑁 ∈ 𝐷 ∧ 𝑓 Fn 𝑁 ∧ 𝜑 ∧ 𝜓)) & ⊢ (𝜑′ ↔ [𝐺 / 𝑓]𝜑) & ⊢ (𝜓′ ↔ [𝐺 / 𝑓]𝜓) & ⊢ (𝜒′ ↔ [𝐺 / 𝑓]𝜒) & ⊢ 𝐺 ∈ V ⇒ ⊢ (𝜒′ ↔ (𝑁 ∈ 𝐷 ∧ 𝐺 Fn 𝑁 ∧ 𝜑′ ∧ 𝜓′)) | ||
Theorem | bnj982 31448 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜒) & ⊢ (𝜃 → ∀𝑥𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃)) | ||
Theorem | bnj1019 31449* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (∃𝑝(𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ↔ (𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃𝑝𝜏)) | ||
Theorem | bnj1023 31450 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∃𝑥(𝜑 → 𝜓) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ ∃𝑥(𝜑 → 𝜒) | ||
Theorem | bnj1095 31451 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
Theorem | bnj1096 31452* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏 ∧ 𝜑)) ⇒ ⊢ (𝜓 → ∀𝑥𝜓) | ||
Theorem | bnj1098 31453* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐷 = (ω ∖ {∅}) ⇒ ⊢ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷) → (𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗)) | ||
Theorem | bnj1101 31454 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∃𝑥(𝜑 → 𝜓) & ⊢ (𝜒 → 𝜑) ⇒ ⊢ ∃𝑥(𝜒 → 𝜓) | ||
Theorem | bnj1113 31455* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝐴 = 𝐵 → 𝐶 = 𝐷) ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐶 𝐸 = ∪ 𝑥 ∈ 𝐷 𝐸) | ||
Theorem | bnj1109 31456 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∃𝑥((𝐴 ≠ 𝐵 ∧ 𝜑) → 𝜓) & ⊢ ((𝐴 = 𝐵 ∧ 𝜑) → 𝜓) ⇒ ⊢ ∃𝑥(𝜑 → 𝜓) | ||
Theorem | bnj1131 31457 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ ∃𝑥𝜑 ⇒ ⊢ 𝜑 | ||
Theorem | bnj1138 31458 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ (𝑋 ∈ 𝐴 ↔ (𝑋 ∈ 𝐵 ∨ 𝑋 ∈ 𝐶)) | ||
Theorem | bnj1142 31459 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | ||
Theorem | bnj1143 31460* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 | ||
Theorem | bnj1146 31461* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 | ||
Theorem | bnj1149 31462 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | bnj1185 31463* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ¬ 𝑤𝑅𝑧) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥) | ||
Theorem | bnj1196 31464 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | ||
Theorem | bnj1198 31465 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜓′ ↔ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜓′) | ||
Theorem | bnj1209 31466* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 → ∃𝑥 ∈ 𝐵 𝜑) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜑)) ⇒ ⊢ (𝜒 → ∃𝑥𝜃) | ||
Theorem | bnj1211 31467 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | ||
Theorem | bnj1213 31468 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜃 → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜃 → 𝑥 ∈ 𝐵) | ||
Theorem | bnj1212 31469* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑥 ∈ 𝐵 ∧ 𝜏)) ⇒ ⊢ (𝜃 → 𝑥 ∈ 𝐴) | ||
Theorem | bnj1219 31470 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 ↔ (𝜑 ∧ 𝜓 ∧ 𝜁)) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝜏 ∧ 𝜂)) ⇒ ⊢ (𝜃 → 𝜓) | ||
Theorem | bnj1224 31471 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ ¬ (𝜃 ∧ 𝜏 ∧ 𝜂) ⇒ ⊢ ((𝜃 ∧ 𝜏) → ¬ 𝜂) | ||
Theorem | bnj1230 31472* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} ⇒ ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) | ||
Theorem | bnj1232 31473 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | bnj1235 31474 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | bnj1239 31475 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒) → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | bnj1238 31476 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | bnj1241 31477 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐶 ⊆ 𝐵) | ||
Theorem | bnj1247 31478 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | bnj1254 31479 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃 ∧ 𝜏)) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | bnj1262 31480 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ (𝜑 → 𝐶 = 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ⊆ 𝐵) | ||
Theorem | bnj1266 31481 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 → ∃𝑥(𝜑 ∧ 𝜓)) ⇒ ⊢ (𝜒 → ∃𝑥𝜓) | ||
Theorem | bnj1265 31482* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | bnj1275 31483 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥(𝜓 ∧ 𝜒)) & ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (𝜑 → ∃𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) | ||
Theorem | bnj1276 31484 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜒 → ∀𝑥𝜒) & ⊢ (𝜃 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜃 → ∀𝑥𝜃) | ||
Theorem | bnj1292 31485 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 = (𝐵 ∩ 𝐶) ⇒ ⊢ 𝐴 ⊆ 𝐵 | ||
Theorem | bnj1293 31486 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 = (𝐵 ∩ 𝐶) ⇒ ⊢ 𝐴 ⊆ 𝐶 | ||
Theorem | bnj1294 31487 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | bnj1299 31488 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | ||
Theorem | bnj1304 31489 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥𝜓) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → ¬ 𝜒) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | bnj1316 31490* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) & ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 𝑦 ∈ 𝐵) ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | bnj1317 31491* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ 𝐴 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝑦 ∈ 𝐴 → ∀𝑥 𝑦 ∈ 𝐴) | ||
Theorem | bnj1322 31492 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) | ||
Theorem | bnj1340 31493 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜓 → ∃𝑥𝜃) & ⊢ (𝜒 ↔ (𝜓 ∧ 𝜃)) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (𝜓 → ∃𝑥𝜒) | ||
Theorem | bnj1345 31494 | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥(𝜓 ∧ 𝜒)) & ⊢ (𝜃 ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) & ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (𝜑 → ∃𝑥𝜃) | ||
Theorem | bnj1350 31495* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → ∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒)) | ||
Theorem | bnj1351 31496* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | bnj1352 31497* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | bnj1361 31498* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | bnj1366 31499* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
⊢ (𝜓 ↔ (𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 ∃!𝑦𝜑 ∧ 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑})) ⇒ ⊢ (𝜓 → 𝐵 ∈ V) | ||
Theorem | bnj1379 31500* | First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
⊢ (𝜑 ↔ ∀𝑓 ∈ 𝐴 Fun 𝑓) & ⊢ 𝐷 = (dom 𝑓 ∩ dom 𝑔) & ⊢ (𝜓 ↔ (𝜑 ∧ ∀𝑓 ∈ 𝐴 ∀𝑔 ∈ 𝐴 (𝑓 ↾ 𝐷) = (𝑔 ↾ 𝐷))) & ⊢ (𝜒 ↔ (𝜓 ∧ 〈𝑥, 𝑦〉 ∈ ∪ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ ∪ 𝐴)) & ⊢ (𝜃 ↔ (𝜒 ∧ 𝑓 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝑓)) & ⊢ (𝜏 ↔ (𝜃 ∧ 𝑔 ∈ 𝐴 ∧ 〈𝑥, 𝑧〉 ∈ 𝑔)) ⇒ ⊢ (𝜓 → Fun ∪ 𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |