Detailed syntax breakdown of Definition df-hodif
| Step | Hyp | Ref
| Expression |
| 1 | | chod 30959 |
. 2
class
−op |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | vg |
. . 3
setvar 𝑔 |
| 4 | | chba 30938 |
. . . 4
class
ℋ |
| 5 | | cmap 8866 |
. . . 4
class
↑m |
| 6 | 4, 4, 5 | co 7431 |
. . 3
class ( ℋ
↑m ℋ) |
| 7 | | vx |
. . . 4
setvar 𝑥 |
| 8 | 7 | cv 1539 |
. . . . . 6
class 𝑥 |
| 9 | 2 | cv 1539 |
. . . . . 6
class 𝑓 |
| 10 | 8, 9 | cfv 6561 |
. . . . 5
class (𝑓‘𝑥) |
| 11 | 3 | cv 1539 |
. . . . . 6
class 𝑔 |
| 12 | 8, 11 | cfv 6561 |
. . . . 5
class (𝑔‘𝑥) |
| 13 | | cmv 30944 |
. . . . 5
class
−ℎ |
| 14 | 10, 12, 13 | co 7431 |
. . . 4
class ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)) |
| 15 | 7, 4, 14 | cmpt 5225 |
. . 3
class (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥))) |
| 16 | 2, 3, 6, 6, 15 | cmpo 7433 |
. 2
class (𝑓 ∈ ( ℋ
↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ)
↦ (𝑥 ∈ ℋ
↦ ((𝑓‘𝑥) −ℎ
(𝑔‘𝑥)))) |
| 17 | 1, 16 | wceq 1540 |
1
wff
−op = (𝑓
∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ)
↦ (𝑥 ∈ ℋ
↦ ((𝑓‘𝑥) −ℎ
(𝑔‘𝑥)))) |