Detailed syntax breakdown of Definition df-hodif
Step | Hyp | Ref
| Expression |
1 | | chod 29203 |
. 2
class
−op |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | vg |
. . 3
setvar 𝑔 |
4 | | chba 29182 |
. . . 4
class
ℋ |
5 | | cmap 8573 |
. . . 4
class
↑m |
6 | 4, 4, 5 | co 7255 |
. . 3
class ( ℋ
↑m ℋ) |
7 | | vx |
. . . 4
setvar 𝑥 |
8 | 7 | cv 1538 |
. . . . . 6
class 𝑥 |
9 | 2 | cv 1538 |
. . . . . 6
class 𝑓 |
10 | 8, 9 | cfv 6418 |
. . . . 5
class (𝑓‘𝑥) |
11 | 3 | cv 1538 |
. . . . . 6
class 𝑔 |
12 | 8, 11 | cfv 6418 |
. . . . 5
class (𝑔‘𝑥) |
13 | | cmv 29188 |
. . . . 5
class
−ℎ |
14 | 10, 12, 13 | co 7255 |
. . . 4
class ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)) |
15 | 7, 4, 14 | cmpt 5153 |
. . 3
class (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥))) |
16 | 2, 3, 6, 6, 15 | cmpo 7257 |
. 2
class (𝑓 ∈ ( ℋ
↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ)
↦ (𝑥 ∈ ℋ
↦ ((𝑓‘𝑥) −ℎ
(𝑔‘𝑥)))) |
17 | 1, 16 | wceq 1539 |
1
wff
−op = (𝑓
∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ)
↦ (𝑥 ∈ ℋ
↦ ((𝑓‘𝑥) −ℎ
(𝑔‘𝑥)))) |