Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hfsmval | Structured version Visualization version GIF version |
Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hfsmval | ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10952 | . . 3 ⊢ ℂ ∈ V | |
2 | ax-hilex 29361 | . . 3 ⊢ ℋ ∈ V | |
3 | 1, 2 | elmap 8659 | . 2 ⊢ (𝑆 ∈ (ℂ ↑m ℋ) ↔ 𝑆: ℋ⟶ℂ) |
4 | 1, 2 | elmap 8659 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
5 | fveq1 6773 | . . . . 5 ⊢ (𝑓 = 𝑆 → (𝑓‘𝑥) = (𝑆‘𝑥)) | |
6 | 5 | oveq1d 7290 | . . . 4 ⊢ (𝑓 = 𝑆 → ((𝑓‘𝑥) + (𝑔‘𝑥)) = ((𝑆‘𝑥) + (𝑔‘𝑥))) |
7 | 6 | mpteq2dv 5176 | . . 3 ⊢ (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑔‘𝑥)))) |
8 | fveq1 6773 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
9 | 8 | oveq2d 7291 | . . . 4 ⊢ (𝑔 = 𝑇 → ((𝑆‘𝑥) + (𝑔‘𝑥)) = ((𝑆‘𝑥) + (𝑇‘𝑥))) |
10 | 9 | mpteq2dv 5176 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
11 | df-hfsum 30095 | . . 3 ⊢ +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) | |
12 | 2 | mptex 7099 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥))) ∈ V |
13 | 7, 10, 11, 12 | ovmpo 7433 | . 2 ⊢ ((𝑆 ∈ (ℂ ↑m ℋ) ∧ 𝑇 ∈ (ℂ ↑m ℋ)) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
14 | 3, 4, 13 | syl2anbr 599 | 1 ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℂcc 10869 + caddc 10874 ℋchba 29281 +fn chfs 29303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-hfsum 30095 |
This theorem is referenced by: hfsval 30105 |
Copyright terms: Public domain | W3C validator |