![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hfsmval | Structured version Visualization version GIF version |
Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hfsmval | ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11259 | . . 3 ⊢ ℂ ∈ V | |
2 | ax-hilex 31023 | . . 3 ⊢ ℋ ∈ V | |
3 | 1, 2 | elmap 8923 | . 2 ⊢ (𝑆 ∈ (ℂ ↑m ℋ) ↔ 𝑆: ℋ⟶ℂ) |
4 | 1, 2 | elmap 8923 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
5 | fveq1 6914 | . . . . 5 ⊢ (𝑓 = 𝑆 → (𝑓‘𝑥) = (𝑆‘𝑥)) | |
6 | 5 | oveq1d 7458 | . . . 4 ⊢ (𝑓 = 𝑆 → ((𝑓‘𝑥) + (𝑔‘𝑥)) = ((𝑆‘𝑥) + (𝑔‘𝑥))) |
7 | 6 | mpteq2dv 5268 | . . 3 ⊢ (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑔‘𝑥)))) |
8 | fveq1 6914 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
9 | 8 | oveq2d 7459 | . . . 4 ⊢ (𝑔 = 𝑇 → ((𝑆‘𝑥) + (𝑔‘𝑥)) = ((𝑆‘𝑥) + (𝑇‘𝑥))) |
10 | 9 | mpteq2dv 5268 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
11 | df-hfsum 31757 | . . 3 ⊢ +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) | |
12 | 2 | mptex 7255 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥))) ∈ V |
13 | 7, 10, 11, 12 | ovmpo 7604 | . 2 ⊢ ((𝑆 ∈ (ℂ ↑m ℋ) ∧ 𝑇 ∈ (ℂ ↑m ℋ)) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
14 | 3, 4, 13 | syl2anbr 598 | 1 ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ⟶wf 6564 ‘cfv 6568 (class class class)co 7443 ↑m cmap 8878 ℂcc 11176 + caddc 11181 ℋchba 30943 +fn chfs 30965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-hilex 31023 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-ov 7446 df-oprab 7447 df-mpo 7448 df-map 8880 df-hfsum 31757 |
This theorem is referenced by: hfsval 31767 |
Copyright terms: Public domain | W3C validator |