Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hfsmval | Structured version Visualization version GIF version |
Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hfsmval | ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10708 | . . 3 ⊢ ℂ ∈ V | |
2 | ax-hilex 28946 | . . 3 ⊢ ℋ ∈ V | |
3 | 1, 2 | elmap 8493 | . 2 ⊢ (𝑆 ∈ (ℂ ↑m ℋ) ↔ 𝑆: ℋ⟶ℂ) |
4 | 1, 2 | elmap 8493 | . 2 ⊢ (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ) |
5 | fveq1 6685 | . . . . 5 ⊢ (𝑓 = 𝑆 → (𝑓‘𝑥) = (𝑆‘𝑥)) | |
6 | 5 | oveq1d 7197 | . . . 4 ⊢ (𝑓 = 𝑆 → ((𝑓‘𝑥) + (𝑔‘𝑥)) = ((𝑆‘𝑥) + (𝑔‘𝑥))) |
7 | 6 | mpteq2dv 5136 | . . 3 ⊢ (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑔‘𝑥)))) |
8 | fveq1 6685 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
9 | 8 | oveq2d 7198 | . . . 4 ⊢ (𝑔 = 𝑇 → ((𝑆‘𝑥) + (𝑔‘𝑥)) = ((𝑆‘𝑥) + (𝑇‘𝑥))) |
10 | 9 | mpteq2dv 5136 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
11 | df-hfsum 29680 | . . 3 ⊢ +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) | |
12 | 2 | mptex 7008 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥))) ∈ V |
13 | 7, 10, 11, 12 | ovmpo 7337 | . 2 ⊢ ((𝑆 ∈ (ℂ ↑m ℋ) ∧ 𝑇 ∈ (ℂ ↑m ℋ)) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
14 | 3, 4, 13 | syl2anbr 602 | 1 ⊢ ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) + (𝑇‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ↦ cmpt 5120 ⟶wf 6345 ‘cfv 6349 (class class class)co 7182 ↑m cmap 8449 ℂcc 10625 + caddc 10630 ℋchba 28866 +fn chfs 28888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-hilex 28946 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-ov 7185 df-oprab 7186 df-mpo 7187 df-map 8451 df-hfsum 29680 |
This theorem is referenced by: hfsval 29690 |
Copyright terms: Public domain | W3C validator |