HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hfsmval Structured version   Visualization version   GIF version

Theorem hfsmval 31762
Description: Value of the sum of two Hilbert space functionals. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hfsmval ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇

Proof of Theorem hfsmval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 11259 . . 3 ℂ ∈ V
2 ax-hilex 31023 . . 3 ℋ ∈ V
31, 2elmap 8923 . 2 (𝑆 ∈ (ℂ ↑m ℋ) ↔ 𝑆: ℋ⟶ℂ)
41, 2elmap 8923 . 2 (𝑇 ∈ (ℂ ↑m ℋ) ↔ 𝑇: ℋ⟶ℂ)
5 fveq1 6914 . . . . 5 (𝑓 = 𝑆 → (𝑓𝑥) = (𝑆𝑥))
65oveq1d 7458 . . . 4 (𝑓 = 𝑆 → ((𝑓𝑥) + (𝑔𝑥)) = ((𝑆𝑥) + (𝑔𝑥)))
76mpteq2dv 5268 . . 3 (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑔𝑥))))
8 fveq1 6914 . . . . 5 (𝑔 = 𝑇 → (𝑔𝑥) = (𝑇𝑥))
98oveq2d 7459 . . . 4 (𝑔 = 𝑇 → ((𝑆𝑥) + (𝑔𝑥)) = ((𝑆𝑥) + (𝑇𝑥)))
109mpteq2dv 5268 . . 3 (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
11 df-hfsum 31757 . . 3 +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
122mptex 7255 . . 3 (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))) ∈ V
137, 10, 11, 12ovmpo 7604 . 2 ((𝑆 ∈ (ℂ ↑m ℋ) ∧ 𝑇 ∈ (ℂ ↑m ℋ)) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
143, 4, 13syl2anbr 598 1 ((𝑆: ℋ⟶ℂ ∧ 𝑇: ℋ⟶ℂ) → (𝑆 +fn 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cmpt 5249  wf 6564  cfv 6568  (class class class)co 7443  m cmap 8878  cc 11176   + caddc 11181  chba 30943   +fn chfs 30965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764  ax-cnex 11234  ax-hilex 31023
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-ov 7446  df-oprab 7447  df-mpo 7448  df-map 8880  df-hfsum 31757
This theorem is referenced by:  hfsval  31767
  Copyright terms: Public domain W3C validator