MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-hl Structured version   Visualization version   GIF version

Definition df-hl 24501
Description: Define the class of all subcomplex Hilbert spaces. A subcomplex Hilbert space is a Banach space which is also an inner product space over a subfield of the field of complex numbers closed under square roots of nonnegative reals. (Contributed by Steve Rodriguez, 28-Apr-2007.)
Assertion
Ref Expression
df-hl ℂHil = (Ban ∩ ℂPreHil)

Detailed syntax breakdown of Definition df-hl
StepHypRef Expression
1 chl 24498 . 2 class ℂHil
2 cbn 24497 . . 3 class Ban
3 ccph 24330 . . 3 class ℂPreHil
42, 3cin 3886 . 2 class (Ban ∩ ℂPreHil)
51, 4wceq 1539 1 wff ℂHil = (Ban ∩ ℂPreHil)
Colors of variables: wff setvar class
This definition is referenced by:  ishl  24526
  Copyright terms: Public domain W3C validator