| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishl | Structured version Visualization version GIF version | ||
| Description: The predicate "is a subcomplex Hilbert space". A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| ishl | ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hl 25237 | . 2 ⊢ ℂHil = (Ban ∩ ℂPreHil) | |
| 2 | 1 | elin2 4166 | 1 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ℂPreHilccph 25066 Bancbn 25233 ℂHilchl 25234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-hl 25237 |
| This theorem is referenced by: hlbn 25263 hlcph 25264 ishl2 25270 cphssphl 25271 cmslsschl 25277 chlcsschl 25278 |
| Copyright terms: Public domain | W3C validator |