MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishl Structured version   Visualization version   GIF version

Theorem ishl 25378
Description: The predicate "is a subcomplex Hilbert space". A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
ishl (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))

Proof of Theorem ishl
StepHypRef Expression
1 df-hl 25353 . 2 ℂHil = (Ban ∩ ℂPreHil)
21elin2 4195 1 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2099  ℂPreHilccph 25182  Bancbn 25349  ℂHilchl 25350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-in 3953  df-hl 25353
This theorem is referenced by:  hlbn  25379  hlcph  25380  ishl2  25386  cphssphl  25387  cmslsschl  25393  chlcsschl  25394
  Copyright terms: Public domain W3C validator