![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ishl | Structured version Visualization version GIF version |
Description: The predicate "is a subcomplex Hilbert space". A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
ishl | ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hl 25259 | . 2 ⊢ ℂHil = (Ban ∩ ℂPreHil) | |
2 | 1 | elin2 4194 | 1 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ℂPreHilccph 25088 Bancbn 25255 ℂHilchl 25256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-in 3952 df-hl 25259 |
This theorem is referenced by: hlbn 25285 hlcph 25286 ishl2 25292 cphssphl 25293 cmslsschl 25299 chlcsschl 25300 |
Copyright terms: Public domain | W3C validator |