Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishl Structured version   Visualization version   GIF version

Theorem ishl 23880
 Description: The predicate "is a subcomplex Hilbert space". A Hilbert space is a Banach space which is also an inner product space, i.e. whose norm satisfies the parallelogram law. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
ishl (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))

Proof of Theorem ishl
StepHypRef Expression
1 df-hl 23855 . 2 ℂHil = (Ban ∩ ℂPreHil)
21elin2 4177 1 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 207   ∧ wa 396   ∈ wcel 2107  ℂPreHilccph 23685  Bancbn 23851  ℂHilchl 23852 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-v 3501  df-in 3946  df-hl 23855 This theorem is referenced by:  hlbn  23881  hlcph  23882  ishl2  23888  cphssphl  23889  cmslsschl  23895  chlcsschl  23896
 Copyright terms: Public domain W3C validator