MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbn Structured version   Visualization version   GIF version

Theorem isbn 23944
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
isbn.1 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
isbn (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))

Proof of Theorem isbn
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 elin 4172 . . 3 (𝑊 ∈ (NrmVec ∩ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp))
21anbi1i 625 . 2 ((𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp))
3 fveq2 6673 . . . . 5 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
4 isbn.1 . . . . 5 𝐹 = (Scalar‘𝑊)
53, 4syl6eqr 2877 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
65eleq1d 2900 . . 3 (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ CMetSp ↔ 𝐹 ∈ CMetSp))
7 df-bn 23942 . . 3 Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp}
86, 7elrab2 3686 . 2 (𝑊 ∈ Ban ↔ (𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp))
9 df-3an 1085 . 2 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp))
102, 8, 93bitr4i 305 1 (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  cin 3938  cfv 6358  Scalarcsca 16571  NrmVeccnvc 23194  CMetSpccms 23938  Bancbn 23939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-iota 6317  df-fv 6366  df-bn 23942
This theorem is referenced by:  bnsca  23945  bnnvc  23946  bncms  23950  lssbn  23958  srabn  23966  ishl2  23976  cmslssbn  23978
  Copyright terms: Public domain W3C validator