| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isbn | Structured version Visualization version GIF version | ||
| Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| isbn.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| isbn | ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3942 | . . 3 ⊢ (𝑊 ∈ (NrmVec ∩ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp)) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp)) |
| 3 | fveq2 6876 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
| 4 | isbn.1 | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 5 | 3, 4 | eqtr4di 2788 | . . . 4 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
| 6 | 5 | eleq1d 2819 | . . 3 ⊢ (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ CMetSp ↔ 𝐹 ∈ CMetSp)) |
| 7 | df-bn 25288 | . . 3 ⊢ Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp} | |
| 8 | 6, 7 | elrab2 3674 | . 2 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp)) |
| 9 | df-3an 1088 | . 2 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp)) | |
| 10 | 2, 8, 9 | 3bitr4i 303 | 1 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 ‘cfv 6531 Scalarcsca 17274 NrmVeccnvc 24520 CMetSpccms 25284 Bancbn 25285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-bn 25288 |
| This theorem is referenced by: bnsca 25291 bnnvc 25292 bncms 25296 lssbn 25304 srabn 25312 ishl2 25322 cmslssbn 25324 |
| Copyright terms: Public domain | W3C validator |