![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isbn | Structured version Visualization version GIF version |
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
isbn.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
isbn | β’ (π β Ban β (π β NrmVec β§ π β CMetSp β§ πΉ β CMetSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3957 | . . 3 β’ (π β (NrmVec β© CMetSp) β (π β NrmVec β§ π β CMetSp)) | |
2 | 1 | anbi1i 623 | . 2 β’ ((π β (NrmVec β© CMetSp) β§ πΉ β CMetSp) β ((π β NrmVec β§ π β CMetSp) β§ πΉ β CMetSp)) |
3 | fveq2 6882 | . . . . 5 β’ (π€ = π β (Scalarβπ€) = (Scalarβπ)) | |
4 | isbn.1 | . . . . 5 β’ πΉ = (Scalarβπ) | |
5 | 3, 4 | eqtr4di 2782 | . . . 4 β’ (π€ = π β (Scalarβπ€) = πΉ) |
6 | 5 | eleq1d 2810 | . . 3 β’ (π€ = π β ((Scalarβπ€) β CMetSp β πΉ β CMetSp)) |
7 | df-bn 25188 | . . 3 β’ Ban = {π€ β (NrmVec β© CMetSp) β£ (Scalarβπ€) β CMetSp} | |
8 | 6, 7 | elrab2 3679 | . 2 β’ (π β Ban β (π β (NrmVec β© CMetSp) β§ πΉ β CMetSp)) |
9 | df-3an 1086 | . 2 β’ ((π β NrmVec β§ π β CMetSp β§ πΉ β CMetSp) β ((π β NrmVec β§ π β CMetSp) β§ πΉ β CMetSp)) | |
10 | 2, 8, 9 | 3bitr4i 303 | 1 β’ (π β Ban β (π β NrmVec β§ π β CMetSp β§ πΉ β CMetSp)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β© cin 3940 βcfv 6534 Scalarcsca 17201 NrmVeccnvc 24414 CMetSpccms 25184 Bancbn 25185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-iota 6486 df-fv 6542 df-bn 25188 |
This theorem is referenced by: bnsca 25191 bnnvc 25192 bncms 25196 lssbn 25204 srabn 25212 ishl2 25222 cmslssbn 25224 |
Copyright terms: Public domain | W3C validator |