MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbn Structured version   Visualization version   GIF version

Theorem isbn 24846
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
isbn.1 𝐹 = (Scalarβ€˜π‘Š)
Assertion
Ref Expression
isbn (π‘Š ∈ Ban ↔ (π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp ∧ 𝐹 ∈ CMetSp))

Proof of Theorem isbn
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 elin 3963 . . 3 (π‘Š ∈ (NrmVec ∩ CMetSp) ↔ (π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp))
21anbi1i 624 . 2 ((π‘Š ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp) ↔ ((π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp) ∧ 𝐹 ∈ CMetSp))
3 fveq2 6888 . . . . 5 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
4 isbn.1 . . . . 5 𝐹 = (Scalarβ€˜π‘Š)
53, 4eqtr4di 2790 . . . 4 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
65eleq1d 2818 . . 3 (𝑀 = π‘Š β†’ ((Scalarβ€˜π‘€) ∈ CMetSp ↔ 𝐹 ∈ CMetSp))
7 df-bn 24844 . . 3 Ban = {𝑀 ∈ (NrmVec ∩ CMetSp) ∣ (Scalarβ€˜π‘€) ∈ CMetSp}
86, 7elrab2 3685 . 2 (π‘Š ∈ Ban ↔ (π‘Š ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp))
9 df-3an 1089 . 2 ((π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ ((π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp) ∧ 𝐹 ∈ CMetSp))
102, 8, 93bitr4i 302 1 (π‘Š ∈ Ban ↔ (π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp ∧ 𝐹 ∈ CMetSp))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   ∩ cin 3946  β€˜cfv 6540  Scalarcsca 17196  NrmVeccnvc 24081  CMetSpccms 24840  Bancbn 24841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-bn 24844
This theorem is referenced by:  bnsca  24847  bnnvc  24848  bncms  24852  lssbn  24860  srabn  24868  ishl2  24878  cmslssbn  24880
  Copyright terms: Public domain W3C validator