![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isbn | Structured version Visualization version GIF version |
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
isbn.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
isbn | ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3961 | . . 3 ⊢ (𝑊 ∈ (NrmVec ∩ CMetSp) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp)) | |
2 | 1 | anbi1i 624 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp)) |
3 | fveq2 6879 | . . . . 5 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊)) | |
4 | isbn.1 | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | 3, 4 | eqtr4di 2790 | . . . 4 ⊢ (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹) |
6 | 5 | eleq1d 2818 | . . 3 ⊢ (𝑤 = 𝑊 → ((Scalar‘𝑤) ∈ CMetSp ↔ 𝐹 ∈ CMetSp)) |
7 | df-bn 24784 | . . 3 ⊢ Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp} | |
8 | 6, 7 | elrab2 3683 | . 2 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp)) |
9 | df-3an 1089 | . 2 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp) ∧ 𝐹 ∈ CMetSp)) | |
10 | 2, 8, 9 | 3bitr4i 302 | 1 ⊢ (𝑊 ∈ Ban ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ CMetSp ∧ 𝐹 ∈ CMetSp)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∩ cin 3944 ‘cfv 6533 Scalarcsca 17184 NrmVeccnvc 24021 CMetSpccms 24780 Bancbn 24781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5143 df-iota 6485 df-fv 6541 df-bn 24784 |
This theorem is referenced by: bnsca 24787 bnnvc 24788 bncms 24792 lssbn 24800 srabn 24808 ishl2 24818 cmslssbn 24820 |
Copyright terms: Public domain | W3C validator |