![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isbn | Structured version Visualization version GIF version |
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
isbn.1 | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
isbn | β’ (π β Ban β (π β NrmVec β§ π β CMetSp β§ πΉ β CMetSp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . 3 β’ (π β (NrmVec β© CMetSp) β (π β NrmVec β§ π β CMetSp)) | |
2 | 1 | anbi1i 624 | . 2 β’ ((π β (NrmVec β© CMetSp) β§ πΉ β CMetSp) β ((π β NrmVec β§ π β CMetSp) β§ πΉ β CMetSp)) |
3 | fveq2 6888 | . . . . 5 β’ (π€ = π β (Scalarβπ€) = (Scalarβπ)) | |
4 | isbn.1 | . . . . 5 β’ πΉ = (Scalarβπ) | |
5 | 3, 4 | eqtr4di 2790 | . . . 4 β’ (π€ = π β (Scalarβπ€) = πΉ) |
6 | 5 | eleq1d 2818 | . . 3 β’ (π€ = π β ((Scalarβπ€) β CMetSp β πΉ β CMetSp)) |
7 | df-bn 24844 | . . 3 β’ Ban = {π€ β (NrmVec β© CMetSp) β£ (Scalarβπ€) β CMetSp} | |
8 | 6, 7 | elrab2 3685 | . 2 β’ (π β Ban β (π β (NrmVec β© CMetSp) β§ πΉ β CMetSp)) |
9 | df-3an 1089 | . 2 β’ ((π β NrmVec β§ π β CMetSp β§ πΉ β CMetSp) β ((π β NrmVec β§ π β CMetSp) β§ πΉ β CMetSp)) | |
10 | 2, 8, 9 | 3bitr4i 302 | 1 β’ (π β Ban β (π β NrmVec β§ π β CMetSp β§ πΉ β CMetSp)) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β© cin 3946 βcfv 6540 Scalarcsca 17196 NrmVeccnvc 24081 CMetSpccms 24840 Bancbn 24841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-bn 24844 |
This theorem is referenced by: bnsca 24847 bnnvc 24848 bncms 24852 lssbn 24860 srabn 24868 ishl2 24878 cmslssbn 24880 |
Copyright terms: Public domain | W3C validator |