MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbn Structured version   Visualization version   GIF version

Theorem isbn 25190
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
isbn.1 𝐹 = (Scalarβ€˜π‘Š)
Assertion
Ref Expression
isbn (π‘Š ∈ Ban ↔ (π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp ∧ 𝐹 ∈ CMetSp))

Proof of Theorem isbn
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 elin 3957 . . 3 (π‘Š ∈ (NrmVec ∩ CMetSp) ↔ (π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp))
21anbi1i 623 . 2 ((π‘Š ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp) ↔ ((π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp) ∧ 𝐹 ∈ CMetSp))
3 fveq2 6882 . . . . 5 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
4 isbn.1 . . . . 5 𝐹 = (Scalarβ€˜π‘Š)
53, 4eqtr4di 2782 . . . 4 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
65eleq1d 2810 . . 3 (𝑀 = π‘Š β†’ ((Scalarβ€˜π‘€) ∈ CMetSp ↔ 𝐹 ∈ CMetSp))
7 df-bn 25188 . . 3 Ban = {𝑀 ∈ (NrmVec ∩ CMetSp) ∣ (Scalarβ€˜π‘€) ∈ CMetSp}
86, 7elrab2 3679 . 2 (π‘Š ∈ Ban ↔ (π‘Š ∈ (NrmVec ∩ CMetSp) ∧ 𝐹 ∈ CMetSp))
9 df-3an 1086 . 2 ((π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp ∧ 𝐹 ∈ CMetSp) ↔ ((π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp) ∧ 𝐹 ∈ CMetSp))
102, 8, 93bitr4i 303 1 (π‘Š ∈ Ban ↔ (π‘Š ∈ NrmVec ∧ π‘Š ∈ CMetSp ∧ 𝐹 ∈ CMetSp))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   ∩ cin 3940  β€˜cfv 6534  Scalarcsca 17201  NrmVeccnvc 24414  CMetSpccms 25184  Bancbn 25185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-iota 6486  df-fv 6542  df-bn 25188
This theorem is referenced by:  bnsca  25191  bnnvc  25192  bncms  25196  lssbn  25204  srabn  25212  ishl2  25222  cmslssbn  25224
  Copyright terms: Public domain W3C validator