|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-hmph | Structured version Visualization version GIF version | ||
| Description: Definition of the relation 𝑥 is homeomorphic to 𝑦. (Contributed by FL, 14-Feb-2007.) | 
| Ref | Expression | 
|---|---|
| df-hmph | ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | chmph 23762 | . 2 class ≃ | |
| 2 | chmeo 23761 | . . . 4 class Homeo | |
| 3 | 2 | ccnv 5684 | . . 3 class ◡Homeo | 
| 4 | cvv 3480 | . . . 4 class V | |
| 5 | c1o 8499 | . . . 4 class 1o | |
| 6 | 4, 5 | cdif 3948 | . . 3 class (V ∖ 1o) | 
| 7 | 3, 6 | cima 5688 | . 2 class (◡Homeo “ (V ∖ 1o)) | 
| 8 | 1, 7 | wceq 1540 | 1 wff ≃ = (◡Homeo “ (V ∖ 1o)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: hmph 23784 hmphtop 23786 hmpher 23792 | 
| Copyright terms: Public domain | W3C validator |