MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeofn Structured version   Visualization version   GIF version

Theorem hmeofn 23481
Description: The set of homeomorphisms is a function on topologies. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmeofn Homeo Fn (Top × Top)

Proof of Theorem hmeofn
Dummy variables 𝑓 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmeo 23479 . 2 Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
2 ovex 7444 . . 3 (𝑗 Cn 𝑘) ∈ V
32rabex 5331 . 2 {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)} ∈ V
41, 3fnmpoi 8058 1 Homeo Fn (Top × Top)
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  {crab 3430   × cxp 5673  ccnv 5674   Fn wfn 6537  (class class class)co 7411  Topctop 22615   Cn ccn 22948  Homeochmeo 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-hmeo 23479
This theorem is referenced by:  hmph  23500  hmphtop  23502  hmpher  23508
  Copyright terms: Public domain W3C validator