Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version |
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmpher | ⊢ ≃ Er Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 22888 | . . . 4 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | cnvimass 5986 | . . . . 5 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
3 | hmeofn 22889 | . . . . . 6 ⊢ Homeo Fn (Top × Top) | |
4 | 3 | fndmi 6533 | . . . . 5 ⊢ dom Homeo = (Top × Top) |
5 | 2, 4 | sseqtri 3961 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
6 | 1, 5 | eqsstri 3959 | . . 3 ⊢ ≃ ⊆ (Top × Top) |
7 | relxp 5606 | . . 3 ⊢ Rel (Top × Top) | |
8 | relss 5690 | . . 3 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃ |
10 | hmphsym 22914 | . 2 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
11 | hmphtr 22915 | . 2 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
12 | hmphref 22913 | . . 3 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
13 | hmphtop1 22911 | . . 3 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
14 | 12, 13 | impbii 208 | . 2 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
15 | 9, 10, 11, 14 | iseri 8499 | 1 ⊢ ≃ Er Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 Vcvv 3430 ∖ cdif 3888 ⊆ wss 3891 class class class wbr 5078 × cxp 5586 ◡ccnv 5587 dom cdm 5588 “ cima 5591 Rel wrel 5593 1oc1o 8274 Er wer 8469 Topctop 22023 Homeochmeo 22885 ≃ chmph 22886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-1o 8281 df-er 8472 df-map 8591 df-top 22024 df-topon 22041 df-cn 22359 df-hmeo 22887 df-hmph 22888 |
This theorem is referenced by: ismntop 31955 |
Copyright terms: Public domain | W3C validator |