MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 23687
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 23659 . . . 4 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 6037 . . . . 5 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 23660 . . . . . 6 Homeo Fn (Top × Top)
43fndmi 6590 . . . . 5 dom Homeo = (Top × Top)
52, 4sseqtri 3986 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
61, 5eqsstri 3984 . . 3 ≃ ⊆ (Top × Top)
7 relxp 5641 . . 3 Rel (Top × Top)
8 relss 5729 . . 3 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
96, 7, 8mp2 9 . 2 Rel ≃
10 hmphsym 23685 . 2 (𝑥𝑦𝑦𝑥)
11 hmphtr 23686 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
12 hmphref 23684 . . 3 (𝑥 ∈ Top → 𝑥𝑥)
13 hmphtop1 23682 . . 3 (𝑥𝑥𝑥 ∈ Top)
1412, 13impbii 209 . 2 (𝑥 ∈ Top ↔ 𝑥𝑥)
159, 10, 11, 14iseri 8659 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3438  cdif 3902  wss 3905   class class class wbr 5095   × cxp 5621  ccnv 5622  dom cdm 5623  cima 5626  Rel wrel 5628  1oc1o 8388   Er wer 8629  Topctop 22796  Homeochmeo 23656  chmph 23657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-1o 8395  df-er 8632  df-map 8762  df-top 22797  df-topon 22814  df-cn 23130  df-hmeo 23658  df-hmph 23659
This theorem is referenced by:  ismntop  33995
  Copyright terms: Public domain W3C validator