MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 22916
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 22888 . . . 4 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 5986 . . . . 5 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 22889 . . . . . 6 Homeo Fn (Top × Top)
43fndmi 6533 . . . . 5 dom Homeo = (Top × Top)
52, 4sseqtri 3961 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
61, 5eqsstri 3959 . . 3 ≃ ⊆ (Top × Top)
7 relxp 5606 . . 3 Rel (Top × Top)
8 relss 5690 . . 3 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
96, 7, 8mp2 9 . 2 Rel ≃
10 hmphsym 22914 . 2 (𝑥𝑦𝑦𝑥)
11 hmphtr 22915 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
12 hmphref 22913 . . 3 (𝑥 ∈ Top → 𝑥𝑥)
13 hmphtop1 22911 . . 3 (𝑥𝑥𝑥 ∈ Top)
1412, 13impbii 208 . 2 (𝑥 ∈ Top ↔ 𝑥𝑥)
159, 10, 11, 14iseri 8499 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3430  cdif 3888  wss 3891   class class class wbr 5078   × cxp 5586  ccnv 5587  dom cdm 5588  cima 5591  Rel wrel 5593  1oc1o 8274   Er wer 8469  Topctop 22023  Homeochmeo 22885  chmph 22886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-1o 8281  df-er 8472  df-map 8591  df-top 22024  df-topon 22041  df-cn 22359  df-hmeo 22887  df-hmph 22888
This theorem is referenced by:  ismntop  31955
  Copyright terms: Public domain W3C validator