| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version | ||
| Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmpher | ⊢ ≃ Er Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph 23710 | . . . 4 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
| 2 | cnvimass 6080 | . . . . 5 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
| 3 | hmeofn 23711 | . . . . . 6 ⊢ Homeo Fn (Top × Top) | |
| 4 | 3 | fndmi 6652 | . . . . 5 ⊢ dom Homeo = (Top × Top) |
| 5 | 2, 4 | sseqtri 4012 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
| 6 | 1, 5 | eqsstri 4010 | . . 3 ⊢ ≃ ⊆ (Top × Top) |
| 7 | relxp 5683 | . . 3 ⊢ Rel (Top × Top) | |
| 8 | relss 5771 | . . 3 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
| 9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃ |
| 10 | hmphsym 23736 | . 2 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
| 11 | hmphtr 23737 | . 2 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
| 12 | hmphref 23735 | . . 3 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
| 13 | hmphtop1 23733 | . . 3 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
| 14 | 12, 13 | impbii 209 | . 2 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
| 15 | 9, 10, 11, 14 | iseri 8754 | 1 ⊢ ≃ Er Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3463 ∖ cdif 3928 ⊆ wss 3931 class class class wbr 5123 × cxp 5663 ◡ccnv 5664 dom cdm 5665 “ cima 5668 Rel wrel 5670 1oc1o 8481 Er wer 8724 Topctop 22847 Homeochmeo 23707 ≃ chmph 23708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-1o 8488 df-er 8727 df-map 8850 df-top 22848 df-topon 22865 df-cn 23181 df-hmeo 23709 df-hmph 23710 |
| This theorem is referenced by: ismntop 33986 |
| Copyright terms: Public domain | W3C validator |