| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version | ||
| Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmpher | ⊢ ≃ Er Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph 23659 | . . . 4 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
| 2 | cnvimass 6037 | . . . . 5 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
| 3 | hmeofn 23660 | . . . . . 6 ⊢ Homeo Fn (Top × Top) | |
| 4 | 3 | fndmi 6590 | . . . . 5 ⊢ dom Homeo = (Top × Top) |
| 5 | 2, 4 | sseqtri 3986 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
| 6 | 1, 5 | eqsstri 3984 | . . 3 ⊢ ≃ ⊆ (Top × Top) |
| 7 | relxp 5641 | . . 3 ⊢ Rel (Top × Top) | |
| 8 | relss 5729 | . . 3 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
| 9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃ |
| 10 | hmphsym 23685 | . 2 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
| 11 | hmphtr 23686 | . 2 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
| 12 | hmphref 23684 | . . 3 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
| 13 | hmphtop1 23682 | . . 3 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
| 14 | 12, 13 | impbii 209 | . 2 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
| 15 | 9, 10, 11, 14 | iseri 8659 | 1 ⊢ ≃ Er Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 class class class wbr 5095 × cxp 5621 ◡ccnv 5622 dom cdm 5623 “ cima 5626 Rel wrel 5628 1oc1o 8388 Er wer 8629 Topctop 22796 Homeochmeo 23656 ≃ chmph 23657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-1o 8395 df-er 8632 df-map 8762 df-top 22797 df-topon 22814 df-cn 23130 df-hmeo 23658 df-hmph 23659 |
| This theorem is referenced by: ismntop 33995 |
| Copyright terms: Public domain | W3C validator |