MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 23288
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 23260 . . . 4 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 6081 . . . . 5 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 23261 . . . . . 6 Homeo Fn (Top × Top)
43fndmi 6654 . . . . 5 dom Homeo = (Top × Top)
52, 4sseqtri 4019 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
61, 5eqsstri 4017 . . 3 ≃ ⊆ (Top × Top)
7 relxp 5695 . . 3 Rel (Top × Top)
8 relss 5782 . . 3 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
96, 7, 8mp2 9 . 2 Rel ≃
10 hmphsym 23286 . 2 (𝑥𝑦𝑦𝑥)
11 hmphtr 23287 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
12 hmphref 23285 . . 3 (𝑥 ∈ Top → 𝑥𝑥)
13 hmphtop1 23283 . . 3 (𝑥𝑥𝑥 ∈ Top)
1412, 13impbii 208 . 2 (𝑥 ∈ Top ↔ 𝑥𝑥)
159, 10, 11, 14iseri 8730 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3475  cdif 3946  wss 3949   class class class wbr 5149   × cxp 5675  ccnv 5676  dom cdm 5677  cima 5680  Rel wrel 5682  1oc1o 8459   Er wer 8700  Topctop 22395  Homeochmeo 23257  chmph 23258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-1o 8466  df-er 8703  df-map 8822  df-top 22396  df-topon 22413  df-cn 22731  df-hmeo 23259  df-hmph 23260
This theorem is referenced by:  ismntop  33006
  Copyright terms: Public domain W3C validator