MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 23694
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 23666 . . . 4 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 6026 . . . . 5 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 23667 . . . . . 6 Homeo Fn (Top × Top)
43fndmi 6580 . . . . 5 dom Homeo = (Top × Top)
52, 4sseqtri 3978 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
61, 5eqsstri 3976 . . 3 ≃ ⊆ (Top × Top)
7 relxp 5629 . . 3 Rel (Top × Top)
8 relss 5717 . . 3 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
96, 7, 8mp2 9 . 2 Rel ≃
10 hmphsym 23692 . 2 (𝑥𝑦𝑦𝑥)
11 hmphtr 23693 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
12 hmphref 23691 . . 3 (𝑥 ∈ Top → 𝑥𝑥)
13 hmphtop1 23689 . . 3 (𝑥𝑥𝑥 ∈ Top)
1412, 13impbii 209 . 2 (𝑥 ∈ Top ↔ 𝑥𝑥)
159, 10, 11, 14iseri 8644 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  cdif 3894  wss 3897   class class class wbr 5086   × cxp 5609  ccnv 5610  dom cdm 5611  cima 5614  Rel wrel 5616  1oc1o 8373   Er wer 8614  Topctop 22803  Homeochmeo 23663  chmph 23664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-1o 8380  df-er 8617  df-map 8747  df-top 22804  df-topon 22821  df-cn 23137  df-hmeo 23665  df-hmph 23666
This theorem is referenced by:  ismntop  34031
  Copyright terms: Public domain W3C validator