MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 23738
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 23710 . . . 4 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 6080 . . . . 5 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 23711 . . . . . 6 Homeo Fn (Top × Top)
43fndmi 6652 . . . . 5 dom Homeo = (Top × Top)
52, 4sseqtri 4012 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
61, 5eqsstri 4010 . . 3 ≃ ⊆ (Top × Top)
7 relxp 5683 . . 3 Rel (Top × Top)
8 relss 5771 . . 3 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
96, 7, 8mp2 9 . 2 Rel ≃
10 hmphsym 23736 . 2 (𝑥𝑦𝑦𝑥)
11 hmphtr 23737 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
12 hmphref 23735 . . 3 (𝑥 ∈ Top → 𝑥𝑥)
13 hmphtop1 23733 . . 3 (𝑥𝑥𝑥 ∈ Top)
1412, 13impbii 209 . 2 (𝑥 ∈ Top ↔ 𝑥𝑥)
159, 10, 11, 14iseri 8754 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3463  cdif 3928  wss 3931   class class class wbr 5123   × cxp 5663  ccnv 5664  dom cdm 5665  cima 5668  Rel wrel 5670  1oc1o 8481   Er wer 8724  Topctop 22847  Homeochmeo 23707  chmph 23708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-1o 8488  df-er 8727  df-map 8850  df-top 22848  df-topon 22865  df-cn 23181  df-hmeo 23709  df-hmph 23710
This theorem is referenced by:  ismntop  33986
  Copyright terms: Public domain W3C validator