MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 23647
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 23619 . . . 4 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 6042 . . . . 5 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 23620 . . . . . 6 Homeo Fn (Top × Top)
43fndmi 6604 . . . . 5 dom Homeo = (Top × Top)
52, 4sseqtri 3992 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
61, 5eqsstri 3990 . . 3 ≃ ⊆ (Top × Top)
7 relxp 5649 . . 3 Rel (Top × Top)
8 relss 5736 . . 3 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
96, 7, 8mp2 9 . 2 Rel ≃
10 hmphsym 23645 . 2 (𝑥𝑦𝑦𝑥)
11 hmphtr 23646 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
12 hmphref 23644 . . 3 (𝑥 ∈ Top → 𝑥𝑥)
13 hmphtop1 23642 . . 3 (𝑥𝑥𝑥 ∈ Top)
1412, 13impbii 209 . 2 (𝑥 ∈ Top ↔ 𝑥𝑥)
159, 10, 11, 14iseri 8675 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3444  cdif 3908  wss 3911   class class class wbr 5102   × cxp 5629  ccnv 5630  dom cdm 5631  cima 5634  Rel wrel 5636  1oc1o 8404   Er wer 8645  Topctop 22756  Homeochmeo 23616  chmph 23617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-1o 8411  df-er 8648  df-map 8778  df-top 22757  df-topon 22774  df-cn 23090  df-hmeo 23618  df-hmph 23619
This theorem is referenced by:  ismntop  33989
  Copyright terms: Public domain W3C validator