MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 22984
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 22956 . . . 4 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 5999 . . . . 5 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 22957 . . . . . 6 Homeo Fn (Top × Top)
43fndmi 6568 . . . . 5 dom Homeo = (Top × Top)
52, 4sseqtri 3962 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
61, 5eqsstri 3960 . . 3 ≃ ⊆ (Top × Top)
7 relxp 5618 . . 3 Rel (Top × Top)
8 relss 5703 . . 3 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
96, 7, 8mp2 9 . 2 Rel ≃
10 hmphsym 22982 . 2 (𝑥𝑦𝑦𝑥)
11 hmphtr 22983 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
12 hmphref 22981 . . 3 (𝑥 ∈ Top → 𝑥𝑥)
13 hmphtop1 22979 . . 3 (𝑥𝑥𝑥 ∈ Top)
1412, 13impbii 208 . 2 (𝑥 ∈ Top ↔ 𝑥𝑥)
159, 10, 11, 14iseri 8556 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  Vcvv 3437  cdif 3889  wss 3892   class class class wbr 5081   × cxp 5598  ccnv 5599  dom cdm 5600  cima 5603  Rel wrel 5605  1oc1o 8321   Er wer 8526  Topctop 22091  Homeochmeo 22953  chmph 22954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-1o 8328  df-er 8529  df-map 8648  df-top 22092  df-topon 22109  df-cn 22427  df-hmeo 22955  df-hmph 22956
This theorem is referenced by:  ismntop  32025
  Copyright terms: Public domain W3C validator