| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version | ||
| Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmpher | ⊢ ≃ Er Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph 23691 | . . . 4 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
| 2 | cnvimass 6038 | . . . . 5 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
| 3 | hmeofn 23692 | . . . . . 6 ⊢ Homeo Fn (Top × Top) | |
| 4 | 3 | fndmi 6593 | . . . . 5 ⊢ dom Homeo = (Top × Top) |
| 5 | 2, 4 | sseqtri 3979 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
| 6 | 1, 5 | eqsstri 3977 | . . 3 ⊢ ≃ ⊆ (Top × Top) |
| 7 | relxp 5639 | . . 3 ⊢ Rel (Top × Top) | |
| 8 | relss 5728 | . . 3 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
| 9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃ |
| 10 | hmphsym 23717 | . 2 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
| 11 | hmphtr 23718 | . 2 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
| 12 | hmphref 23716 | . . 3 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
| 13 | hmphtop1 23714 | . . 3 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
| 14 | 12, 13 | impbii 209 | . 2 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
| 15 | 9, 10, 11, 14 | iseri 8658 | 1 ⊢ ≃ Er Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 class class class wbr 5095 × cxp 5619 ◡ccnv 5620 dom cdm 5621 “ cima 5624 Rel wrel 5626 1oc1o 8387 Er wer 8628 Topctop 22828 Homeochmeo 23688 ≃ chmph 23689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-1o 8394 df-er 8631 df-map 8761 df-top 22829 df-topon 22846 df-cn 23162 df-hmeo 23690 df-hmph 23691 |
| This theorem is referenced by: ismntop 34111 |
| Copyright terms: Public domain | W3C validator |