Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version |
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmpher | ⊢ ≃ Er Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 22956 | . . . 4 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | cnvimass 5999 | . . . . 5 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
3 | hmeofn 22957 | . . . . . 6 ⊢ Homeo Fn (Top × Top) | |
4 | 3 | fndmi 6568 | . . . . 5 ⊢ dom Homeo = (Top × Top) |
5 | 2, 4 | sseqtri 3962 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
6 | 1, 5 | eqsstri 3960 | . . 3 ⊢ ≃ ⊆ (Top × Top) |
7 | relxp 5618 | . . 3 ⊢ Rel (Top × Top) | |
8 | relss 5703 | . . 3 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃ |
10 | hmphsym 22982 | . 2 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
11 | hmphtr 22983 | . 2 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
12 | hmphref 22981 | . . 3 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
13 | hmphtop1 22979 | . . 3 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
14 | 12, 13 | impbii 208 | . 2 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
15 | 9, 10, 11, 14 | iseri 8556 | 1 ⊢ ≃ Er Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 Vcvv 3437 ∖ cdif 3889 ⊆ wss 3892 class class class wbr 5081 × cxp 5598 ◡ccnv 5599 dom cdm 5600 “ cima 5603 Rel wrel 5605 1oc1o 8321 Er wer 8526 Topctop 22091 Homeochmeo 22953 ≃ chmph 22954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-1o 8328 df-er 8529 df-map 8648 df-top 22092 df-topon 22109 df-cn 22427 df-hmeo 22955 df-hmph 22956 |
This theorem is referenced by: ismntop 32025 |
Copyright terms: Public domain | W3C validator |