![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version |
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmpher | ⊢ ≃ Er Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 23480 | . . . 4 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | cnvimass 6080 | . . . . 5 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
3 | hmeofn 23481 | . . . . . 6 ⊢ Homeo Fn (Top × Top) | |
4 | 3 | fndmi 6653 | . . . . 5 ⊢ dom Homeo = (Top × Top) |
5 | 2, 4 | sseqtri 4018 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
6 | 1, 5 | eqsstri 4016 | . . 3 ⊢ ≃ ⊆ (Top × Top) |
7 | relxp 5694 | . . 3 ⊢ Rel (Top × Top) | |
8 | relss 5781 | . . 3 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃ |
10 | hmphsym 23506 | . 2 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
11 | hmphtr 23507 | . 2 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
12 | hmphref 23505 | . . 3 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
13 | hmphtop1 23503 | . . 3 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
14 | 12, 13 | impbii 208 | . 2 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
15 | 9, 10, 11, 14 | iseri 8732 | 1 ⊢ ≃ Er Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 ⊆ wss 3948 class class class wbr 5148 × cxp 5674 ◡ccnv 5675 dom cdm 5676 “ cima 5679 Rel wrel 5681 1oc1o 8461 Er wer 8702 Topctop 22615 Homeochmeo 23477 ≃ chmph 23478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-1o 8468 df-er 8705 df-map 8824 df-top 22616 df-topon 22633 df-cn 22951 df-hmeo 23479 df-hmph 23480 |
This theorem is referenced by: ismntop 33292 |
Copyright terms: Public domain | W3C validator |