MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 21965
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 21937 . . . . . 6 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 5730 . . . . . . 7 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 21938 . . . . . . . 8 Homeo Fn (Top × Top)
4 fndm 6227 . . . . . . . 8 (Homeo Fn (Top × Top) → dom Homeo = (Top × Top))
53, 4ax-mp 5 . . . . . . 7 dom Homeo = (Top × Top)
62, 5sseqtri 3862 . . . . . 6 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
71, 6eqsstri 3860 . . . . 5 ≃ ⊆ (Top × Top)
8 relxp 5364 . . . . 5 Rel (Top × Top)
9 relss 5445 . . . . 5 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
107, 8, 9mp2 9 . . . 4 Rel ≃
1110a1i 11 . . 3 (⊤ → Rel ≃ )
12 hmphsym 21963 . . . 4 (𝑥𝑦𝑦𝑥)
1312adantl 475 . . 3 ((⊤ ∧ 𝑥𝑦) → 𝑦𝑥)
14 hmphtr 21964 . . . 4 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
1514adantl 475 . . 3 ((⊤ ∧ (𝑥𝑦𝑦𝑧)) → 𝑥𝑧)
16 hmphref 21962 . . . . 5 (𝑥 ∈ Top → 𝑥𝑥)
17 hmphtop1 21960 . . . . 5 (𝑥𝑥𝑥 ∈ Top)
1816, 17impbii 201 . . . 4 (𝑥 ∈ Top ↔ 𝑥𝑥)
1918a1i 11 . . 3 (⊤ → (𝑥 ∈ Top ↔ 𝑥𝑥))
2011, 13, 15, 19iserd 8040 . 2 (⊤ → ≃ Er Top)
2120mptru 1664 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386   = wceq 1656  wtru 1657  wcel 2164  Vcvv 3414  cdif 3795  wss 3798   class class class wbr 4875   × cxp 5344  ccnv 5345  dom cdm 5346  cima 5349  Rel wrel 5351   Fn wfn 6122  1oc1o 7824   Er wer 8011  Topctop 21075  Homeochmeo 21934  chmph 21935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-1st 7433  df-2nd 7434  df-1o 7831  df-er 8014  df-map 8129  df-top 21076  df-topon 21093  df-cn 21409  df-hmeo 21936  df-hmph 21937
This theorem is referenced by:  ismntop  30611
  Copyright terms: Public domain W3C validator