| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version | ||
| Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmpher | ⊢ ≃ Er Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph 23649 | . . . 4 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
| 2 | cnvimass 6055 | . . . . 5 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
| 3 | hmeofn 23650 | . . . . . 6 ⊢ Homeo Fn (Top × Top) | |
| 4 | 3 | fndmi 6624 | . . . . 5 ⊢ dom Homeo = (Top × Top) |
| 5 | 2, 4 | sseqtri 3997 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
| 6 | 1, 5 | eqsstri 3995 | . . 3 ⊢ ≃ ⊆ (Top × Top) |
| 7 | relxp 5658 | . . 3 ⊢ Rel (Top × Top) | |
| 8 | relss 5746 | . . 3 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
| 9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃ |
| 10 | hmphsym 23675 | . 2 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
| 11 | hmphtr 23676 | . 2 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
| 12 | hmphref 23674 | . . 3 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
| 13 | hmphtop1 23672 | . . 3 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
| 14 | 12, 13 | impbii 209 | . 2 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
| 15 | 9, 10, 11, 14 | iseri 8700 | 1 ⊢ ≃ Er Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∖ cdif 3913 ⊆ wss 3916 class class class wbr 5109 × cxp 5638 ◡ccnv 5639 dom cdm 5640 “ cima 5643 Rel wrel 5645 1oc1o 8429 Er wer 8670 Topctop 22786 Homeochmeo 23646 ≃ chmph 23647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-1o 8436 df-er 8673 df-map 8803 df-top 22787 df-topon 22804 df-cn 23120 df-hmeo 23648 df-hmph 23649 |
| This theorem is referenced by: ismntop 34022 |
| Copyright terms: Public domain | W3C validator |