![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version |
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmpher | ⊢ ≃ Er Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 21937 | . . . . . 6 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | cnvimass 5730 | . . . . . . 7 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
3 | hmeofn 21938 | . . . . . . . 8 ⊢ Homeo Fn (Top × Top) | |
4 | fndm 6227 | . . . . . . . 8 ⊢ (Homeo Fn (Top × Top) → dom Homeo = (Top × Top)) | |
5 | 3, 4 | ax-mp 5 | . . . . . . 7 ⊢ dom Homeo = (Top × Top) |
6 | 2, 5 | sseqtri 3862 | . . . . . 6 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
7 | 1, 6 | eqsstri 3860 | . . . . 5 ⊢ ≃ ⊆ (Top × Top) |
8 | relxp 5364 | . . . . 5 ⊢ Rel (Top × Top) | |
9 | relss 5445 | . . . . 5 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
10 | 7, 8, 9 | mp2 9 | . . . 4 ⊢ Rel ≃ |
11 | 10 | a1i 11 | . . 3 ⊢ (⊤ → Rel ≃ ) |
12 | hmphsym 21963 | . . . 4 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
13 | 12 | adantl 475 | . . 3 ⊢ ((⊤ ∧ 𝑥 ≃ 𝑦) → 𝑦 ≃ 𝑥) |
14 | hmphtr 21964 | . . . 4 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
15 | 14 | adantl 475 | . . 3 ⊢ ((⊤ ∧ (𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧)) → 𝑥 ≃ 𝑧) |
16 | hmphref 21962 | . . . . 5 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
17 | hmphtop1 21960 | . . . . 5 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
18 | 16, 17 | impbii 201 | . . . 4 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
19 | 18 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥)) |
20 | 11, 13, 15, 19 | iserd 8040 | . 2 ⊢ (⊤ → ≃ Er Top) |
21 | 20 | mptru 1664 | 1 ⊢ ≃ Er Top |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1656 ⊤wtru 1657 ∈ wcel 2164 Vcvv 3414 ∖ cdif 3795 ⊆ wss 3798 class class class wbr 4875 × cxp 5344 ◡ccnv 5345 dom cdm 5346 “ cima 5349 Rel wrel 5351 Fn wfn 6122 1oc1o 7824 Er wer 8011 Topctop 21075 Homeochmeo 21934 ≃ chmph 21935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-1o 7831 df-er 8014 df-map 8129 df-top 21076 df-topon 21093 df-cn 21409 df-hmeo 21936 df-hmph 21937 |
This theorem is referenced by: ismntop 30611 |
Copyright terms: Public domain | W3C validator |