MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 23508
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 23480 . . . 4 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 6080 . . . . 5 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 23481 . . . . . 6 Homeo Fn (Top × Top)
43fndmi 6653 . . . . 5 dom Homeo = (Top × Top)
52, 4sseqtri 4018 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
61, 5eqsstri 4016 . . 3 ≃ ⊆ (Top × Top)
7 relxp 5694 . . 3 Rel (Top × Top)
8 relss 5781 . . 3 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
96, 7, 8mp2 9 . 2 Rel ≃
10 hmphsym 23506 . 2 (𝑥𝑦𝑦𝑥)
11 hmphtr 23507 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
12 hmphref 23505 . . 3 (𝑥 ∈ Top → 𝑥𝑥)
13 hmphtop1 23503 . . 3 (𝑥𝑥𝑥 ∈ Top)
1412, 13impbii 208 . 2 (𝑥 ∈ Top ↔ 𝑥𝑥)
159, 10, 11, 14iseri 8732 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3474  cdif 3945  wss 3948   class class class wbr 5148   × cxp 5674  ccnv 5675  dom cdm 5676  cima 5679  Rel wrel 5681  1oc1o 8461   Er wer 8702  Topctop 22615  Homeochmeo 23477  chmph 23478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-1o 8468  df-er 8705  df-map 8824  df-top 22616  df-topon 22633  df-cn 22951  df-hmeo 23479  df-hmph 23480
This theorem is referenced by:  ismntop  33292
  Copyright terms: Public domain W3C validator