MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 23817
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 23789 . . . 4 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 6107 . . . . 5 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 23790 . . . . . 6 Homeo Fn (Top × Top)
43fndmi 6680 . . . . 5 dom Homeo = (Top × Top)
52, 4sseqtri 4035 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
61, 5eqsstri 4033 . . 3 ≃ ⊆ (Top × Top)
7 relxp 5711 . . 3 Rel (Top × Top)
8 relss 5798 . . 3 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
96, 7, 8mp2 9 . 2 Rel ≃
10 hmphsym 23815 . 2 (𝑥𝑦𝑦𝑥)
11 hmphtr 23816 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
12 hmphref 23814 . . 3 (𝑥 ∈ Top → 𝑥𝑥)
13 hmphtop1 23812 . . 3 (𝑥𝑥𝑥 ∈ Top)
1412, 13impbii 209 . 2 (𝑥 ∈ Top ↔ 𝑥𝑥)
159, 10, 11, 14iseri 8780 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  Vcvv 3481  cdif 3963  wss 3966   class class class wbr 5151   × cxp 5691  ccnv 5692  dom cdm 5693  cima 5696  Rel wrel 5698  1oc1o 8507   Er wer 8750  Topctop 22924  Homeochmeo 23786  chmph 23787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-1o 8514  df-er 8753  df-map 8876  df-top 22925  df-topon 22942  df-cn 23260  df-hmeo 23788  df-hmph 23789
This theorem is referenced by:  ismntop  34021
  Copyright terms: Public domain W3C validator