![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version |
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmpher | ⊢ ≃ Er Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 23789 | . . . 4 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | cnvimass 6107 | . . . . 5 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
3 | hmeofn 23790 | . . . . . 6 ⊢ Homeo Fn (Top × Top) | |
4 | 3 | fndmi 6680 | . . . . 5 ⊢ dom Homeo = (Top × Top) |
5 | 2, 4 | sseqtri 4035 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
6 | 1, 5 | eqsstri 4033 | . . 3 ⊢ ≃ ⊆ (Top × Top) |
7 | relxp 5711 | . . 3 ⊢ Rel (Top × Top) | |
8 | relss 5798 | . . 3 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃ |
10 | hmphsym 23815 | . 2 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
11 | hmphtr 23816 | . 2 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
12 | hmphref 23814 | . . 3 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
13 | hmphtop1 23812 | . . 3 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
14 | 12, 13 | impbii 209 | . 2 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
15 | 9, 10, 11, 14 | iseri 8780 | 1 ⊢ ≃ Er Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3481 ∖ cdif 3963 ⊆ wss 3966 class class class wbr 5151 × cxp 5691 ◡ccnv 5692 dom cdm 5693 “ cima 5696 Rel wrel 5698 1oc1o 8507 Er wer 8750 Topctop 22924 Homeochmeo 23786 ≃ chmph 23787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-1o 8514 df-er 8753 df-map 8876 df-top 22925 df-topon 22942 df-cn 23260 df-hmeo 23788 df-hmph 23789 |
This theorem is referenced by: ismntop 34021 |
Copyright terms: Public domain | W3C validator |