MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmpher Structured version   Visualization version   GIF version

Theorem hmpher 23677
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmpher ≃ Er Top

Proof of Theorem hmpher
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-hmph 23649 . . . 4 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 6055 . . . . 5 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 23650 . . . . . 6 Homeo Fn (Top × Top)
43fndmi 6624 . . . . 5 dom Homeo = (Top × Top)
52, 4sseqtri 3997 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
61, 5eqsstri 3995 . . 3 ≃ ⊆ (Top × Top)
7 relxp 5658 . . 3 Rel (Top × Top)
8 relss 5746 . . 3 ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ ))
96, 7, 8mp2 9 . 2 Rel ≃
10 hmphsym 23675 . 2 (𝑥𝑦𝑦𝑥)
11 hmphtr 23676 . 2 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
12 hmphref 23674 . . 3 (𝑥 ∈ Top → 𝑥𝑥)
13 hmphtop1 23672 . . 3 (𝑥𝑥𝑥 ∈ Top)
1412, 13impbii 209 . 2 (𝑥 ∈ Top ↔ 𝑥𝑥)
159, 10, 11, 14iseri 8700 1 ≃ Er Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3450  cdif 3913  wss 3916   class class class wbr 5109   × cxp 5638  ccnv 5639  dom cdm 5640  cima 5643  Rel wrel 5645  1oc1o 8429   Er wer 8670  Topctop 22786  Homeochmeo 23646  chmph 23647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-1o 8436  df-er 8673  df-map 8803  df-top 22787  df-topon 22804  df-cn 23120  df-hmeo 23648  df-hmph 23649
This theorem is referenced by:  ismntop  34022
  Copyright terms: Public domain W3C validator