| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version | ||
| Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmpher | ⊢ ≃ Er Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph 23619 | . . . 4 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
| 2 | cnvimass 6042 | . . . . 5 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
| 3 | hmeofn 23620 | . . . . . 6 ⊢ Homeo Fn (Top × Top) | |
| 4 | 3 | fndmi 6604 | . . . . 5 ⊢ dom Homeo = (Top × Top) |
| 5 | 2, 4 | sseqtri 3992 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
| 6 | 1, 5 | eqsstri 3990 | . . 3 ⊢ ≃ ⊆ (Top × Top) |
| 7 | relxp 5649 | . . 3 ⊢ Rel (Top × Top) | |
| 8 | relss 5736 | . . 3 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
| 9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃ |
| 10 | hmphsym 23645 | . 2 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
| 11 | hmphtr 23646 | . 2 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
| 12 | hmphref 23644 | . . 3 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
| 13 | hmphtop1 23642 | . . 3 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
| 14 | 12, 13 | impbii 209 | . 2 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
| 15 | 9, 10, 11, 14 | iseri 8675 | 1 ⊢ ≃ Er Top |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 class class class wbr 5102 × cxp 5629 ◡ccnv 5630 dom cdm 5631 “ cima 5634 Rel wrel 5636 1oc1o 8404 Er wer 8645 Topctop 22756 Homeochmeo 23616 ≃ chmph 23617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-1o 8411 df-er 8648 df-map 8778 df-top 22757 df-topon 22774 df-cn 23090 df-hmeo 23618 df-hmph 23619 |
| This theorem is referenced by: ismntop 33989 |
| Copyright terms: Public domain | W3C validator |