![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmpher | Structured version Visualization version GIF version |
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmpher | ⊢ ≃ Er Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 23260 | . . . 4 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | cnvimass 6081 | . . . . 5 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
3 | hmeofn 23261 | . . . . . 6 ⊢ Homeo Fn (Top × Top) | |
4 | 3 | fndmi 6654 | . . . . 5 ⊢ dom Homeo = (Top × Top) |
5 | 2, 4 | sseqtri 4019 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
6 | 1, 5 | eqsstri 4017 | . . 3 ⊢ ≃ ⊆ (Top × Top) |
7 | relxp 5695 | . . 3 ⊢ Rel (Top × Top) | |
8 | relss 5782 | . . 3 ⊢ ( ≃ ⊆ (Top × Top) → (Rel (Top × Top) → Rel ≃ )) | |
9 | 6, 7, 8 | mp2 9 | . 2 ⊢ Rel ≃ |
10 | hmphsym 23286 | . 2 ⊢ (𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥) | |
11 | hmphtr 23287 | . 2 ⊢ ((𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧) → 𝑥 ≃ 𝑧) | |
12 | hmphref 23285 | . . 3 ⊢ (𝑥 ∈ Top → 𝑥 ≃ 𝑥) | |
13 | hmphtop1 23283 | . . 3 ⊢ (𝑥 ≃ 𝑥 → 𝑥 ∈ Top) | |
14 | 12, 13 | impbii 208 | . 2 ⊢ (𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥) |
15 | 9, 10, 11, 14 | iseri 8730 | 1 ⊢ ≃ Er Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3475 ∖ cdif 3946 ⊆ wss 3949 class class class wbr 5149 × cxp 5675 ◡ccnv 5676 dom cdm 5677 “ cima 5680 Rel wrel 5682 1oc1o 8459 Er wer 8700 Topctop 22395 Homeochmeo 23257 ≃ chmph 23258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-1o 8466 df-er 8703 df-map 8822 df-top 22396 df-topon 22413 df-cn 22731 df-hmeo 23259 df-hmph 23260 |
This theorem is referenced by: ismntop 33006 |
Copyright terms: Public domain | W3C validator |