![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmph | Structured version Visualization version GIF version |
Description: Express the predicate 𝐽 is homeomorphic to 𝐾. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmph | ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 23787 | . 2 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | hmeofn 23788 | . 2 ⊢ Homeo Fn (Top × Top) | |
3 | 1, 2 | brwitnlem 8565 | 1 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ≠ wne 2946 ∅c0 4352 class class class wbr 5166 × cxp 5698 (class class class)co 7450 Topctop 22922 Homeochmeo 23784 ≃ chmph 23785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-1o 8524 df-hmeo 23786 df-hmph 23787 |
This theorem is referenced by: hmphi 23808 hmphsym 23813 hmphtr 23814 hmphen 23816 haushmphlem 23818 cmphmph 23819 connhmph 23820 reghmph 23824 nrmhmph 23825 hmphdis 23827 hmphen2 23830 |
Copyright terms: Public domain | W3C validator |