![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmph | Structured version Visualization version GIF version |
Description: Express the predicate 𝐽 is homeomorphic to 𝐾. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmph | ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 21888 | . 2 ⊢ ≃ = (◡Homeo “ (V ∖ 1𝑜)) | |
2 | hmeofn 21889 | . 2 ⊢ Homeo Fn (Top × Top) | |
3 | 1, 2 | brwitnlem 7827 | 1 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ≠ wne 2971 ∅c0 4115 class class class wbr 4843 × cxp 5310 (class class class)co 6878 Topctop 21026 Homeochmeo 21885 ≃ chmph 21886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-1o 7799 df-hmeo 21887 df-hmph 21888 |
This theorem is referenced by: hmphi 21909 hmphsym 21914 hmphtr 21915 hmphen 21917 haushmphlem 21919 cmphmph 21920 connhmph 21921 reghmph 21925 nrmhmph 21926 hmphdis 21928 hmphen2 21931 |
Copyright terms: Public domain | W3C validator |