| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmph | Structured version Visualization version GIF version | ||
| Description: Express the predicate 𝐽 is homeomorphic to 𝐾. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmph | ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph 23710 | . 2 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
| 2 | hmeofn 23711 | . 2 ⊢ Homeo Fn (Top × Top) | |
| 3 | 1, 2 | brwitnlem 8527 | 1 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ≠ wne 2931 ∅c0 4313 class class class wbr 5123 × cxp 5663 (class class class)co 7413 Topctop 22847 Homeochmeo 23707 ≃ chmph 23708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-1o 8488 df-hmeo 23709 df-hmph 23710 |
| This theorem is referenced by: hmphi 23731 hmphsym 23736 hmphtr 23737 hmphen 23739 haushmphlem 23741 cmphmph 23742 connhmph 23743 reghmph 23747 nrmhmph 23748 hmphdis 23750 hmphen2 23753 |
| Copyright terms: Public domain | W3C validator |