| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmph | Structured version Visualization version GIF version | ||
| Description: Express the predicate 𝐽 is homeomorphic to 𝐾. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmph | ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph 23650 | . 2 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
| 2 | hmeofn 23651 | . 2 ⊢ Homeo Fn (Top × Top) | |
| 3 | 1, 2 | brwitnlem 8474 | 1 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ≠ wne 2926 ∅c0 4299 class class class wbr 5110 × cxp 5639 (class class class)co 7390 Topctop 22787 Homeochmeo 23647 ≃ chmph 23648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-1o 8437 df-hmeo 23649 df-hmph 23650 |
| This theorem is referenced by: hmphi 23671 hmphsym 23676 hmphtr 23677 hmphen 23679 haushmphlem 23681 cmphmph 23682 connhmph 23683 reghmph 23687 nrmhmph 23688 hmphdis 23690 hmphen2 23693 |
| Copyright terms: Public domain | W3C validator |