MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmph Structured version   Visualization version   GIF version

Theorem hmph 21908
Description: Express the predicate 𝐽 is homeomorphic to 𝐾. (Contributed by FL, 14-Feb-2007.) (Revised by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmph (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)

Proof of Theorem hmph
StepHypRef Expression
1 df-hmph 21888 . 2 ≃ = (Homeo “ (V ∖ 1𝑜))
2 hmeofn 21889 . 2 Homeo Fn (Top × Top)
31, 2brwitnlem 7827 1 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wne 2971  c0 4115   class class class wbr 4843   × cxp 5310  (class class class)co 6878  Topctop 21026  Homeochmeo 21885  chmph 21886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-1o 7799  df-hmeo 21887  df-hmph 21888
This theorem is referenced by:  hmphi  21909  hmphsym  21914  hmphtr  21915  hmphen  21917  haushmphlem  21919  cmphmph  21920  connhmph  21921  reghmph  21925  nrmhmph  21926  hmphdis  21928  hmphen2  21931
  Copyright terms: Public domain W3C validator