Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmphtop | Structured version Visualization version GIF version |
Description: Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmphtop | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 22457 | . . 3 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | cnvimass 5922 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
3 | hmeofn 22458 | . . . . 5 ⊢ Homeo Fn (Top × Top) | |
4 | fndm 6437 | . . . . 5 ⊢ (Homeo Fn (Top × Top) → dom Homeo = (Top × Top)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ dom Homeo = (Top × Top) |
6 | 2, 5 | sseqtri 3929 | . . 3 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
7 | 1, 6 | eqsstri 3927 | . 2 ⊢ ≃ ⊆ (Top × Top) |
8 | 7 | brel 5587 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∖ cdif 3856 class class class wbr 5033 × cxp 5523 ◡ccnv 5524 dom cdm 5525 “ cima 5528 Fn wfn 6331 1oc1o 8106 Topctop 21594 Homeochmeo 22454 ≃ chmph 22455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-fv 6344 df-ov 7154 df-oprab 7155 df-mpo 7156 df-1st 7694 df-2nd 7695 df-hmeo 22456 df-hmph 22457 |
This theorem is referenced by: hmphtop1 22480 hmphtop2 22481 |
Copyright terms: Public domain | W3C validator |