![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmphtop | Structured version Visualization version GIF version |
Description: Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmphtop | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 23785 | . . 3 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | cnvimass 6111 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
3 | hmeofn 23786 | . . . . 5 ⊢ Homeo Fn (Top × Top) | |
4 | fndm 6682 | . . . . 5 ⊢ (Homeo Fn (Top × Top) → dom Homeo = (Top × Top)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ dom Homeo = (Top × Top) |
6 | 2, 5 | sseqtri 4045 | . . 3 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
7 | 1, 6 | eqsstri 4043 | . 2 ⊢ ≃ ⊆ (Top × Top) |
8 | 7 | brel 5765 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 class class class wbr 5166 × cxp 5698 ◡ccnv 5699 dom cdm 5700 “ cima 5703 Fn wfn 6568 1oc1o 8515 Topctop 22920 Homeochmeo 23782 ≃ chmph 23783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-hmeo 23784 df-hmph 23785 |
This theorem is referenced by: hmphtop1 23808 hmphtop2 23809 |
Copyright terms: Public domain | W3C validator |