| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmphtop | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmphtop | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph 23643 | . . 3 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
| 2 | cnvimass 6053 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
| 3 | hmeofn 23644 | . . . . 5 ⊢ Homeo Fn (Top × Top) | |
| 4 | fndm 6621 | . . . . 5 ⊢ (Homeo Fn (Top × Top) → dom Homeo = (Top × Top)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ dom Homeo = (Top × Top) |
| 6 | 2, 5 | sseqtri 3995 | . . 3 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
| 7 | 1, 6 | eqsstri 3993 | . 2 ⊢ ≃ ⊆ (Top × Top) |
| 8 | 7 | brel 5703 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 class class class wbr 5107 × cxp 5636 ◡ccnv 5637 dom cdm 5638 “ cima 5641 Fn wfn 6506 1oc1o 8427 Topctop 22780 Homeochmeo 23640 ≃ chmph 23641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-hmeo 23642 df-hmph 23643 |
| This theorem is referenced by: hmphtop1 23666 hmphtop2 23667 |
| Copyright terms: Public domain | W3C validator |