MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphtop Structured version   Visualization version   GIF version

Theorem hmphtop 23698
Description: Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmphtop (𝐽𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))

Proof of Theorem hmphtop
StepHypRef Expression
1 df-hmph 23676 . . 3 ≃ = (Homeo “ (V ∖ 1o))
2 cnvimass 6042 . . . 4 (Homeo “ (V ∖ 1o)) ⊆ dom Homeo
3 hmeofn 23677 . . . . 5 Homeo Fn (Top × Top)
4 fndm 6603 . . . . 5 (Homeo Fn (Top × Top) → dom Homeo = (Top × Top))
53, 4ax-mp 5 . . . 4 dom Homeo = (Top × Top)
62, 5sseqtri 3992 . . 3 (Homeo “ (V ∖ 1o)) ⊆ (Top × Top)
71, 6eqsstri 3990 . 2 ≃ ⊆ (Top × Top)
87brel 5696 1 (𝐽𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908   class class class wbr 5102   × cxp 5629  ccnv 5630  dom cdm 5631  cima 5634   Fn wfn 6494  1oc1o 8404  Topctop 22813  Homeochmeo 23673  chmph 23674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-hmeo 23675  df-hmph 23676
This theorem is referenced by:  hmphtop1  23699  hmphtop2  23700
  Copyright terms: Public domain W3C validator