![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmphtop | Structured version Visualization version GIF version |
Description: Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmphtop | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 23780 | . . 3 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | cnvimass 6102 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
3 | hmeofn 23781 | . . . . 5 ⊢ Homeo Fn (Top × Top) | |
4 | fndm 6672 | . . . . 5 ⊢ (Homeo Fn (Top × Top) → dom Homeo = (Top × Top)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ dom Homeo = (Top × Top) |
6 | 2, 5 | sseqtri 4032 | . . 3 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
7 | 1, 6 | eqsstri 4030 | . 2 ⊢ ≃ ⊆ (Top × Top) |
8 | 7 | brel 5754 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 class class class wbr 5148 × cxp 5687 ◡ccnv 5688 dom cdm 5689 “ cima 5692 Fn wfn 6558 1oc1o 8498 Topctop 22915 Homeochmeo 23777 ≃ chmph 23778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-hmeo 23779 df-hmph 23780 |
This theorem is referenced by: hmphtop1 23803 hmphtop2 23804 |
Copyright terms: Public domain | W3C validator |