![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hmphtop | Structured version Visualization version GIF version |
Description: Reverse closure for the homeomorphic predicate. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmphtop | ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-hmph 23480 | . . 3 ⊢ ≃ = (◡Homeo “ (V ∖ 1o)) | |
2 | cnvimass 6080 | . . . 4 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ dom Homeo | |
3 | hmeofn 23481 | . . . . 5 ⊢ Homeo Fn (Top × Top) | |
4 | fndm 6652 | . . . . 5 ⊢ (Homeo Fn (Top × Top) → dom Homeo = (Top × Top)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ dom Homeo = (Top × Top) |
6 | 2, 5 | sseqtri 4018 | . . 3 ⊢ (◡Homeo “ (V ∖ 1o)) ⊆ (Top × Top) |
7 | 1, 6 | eqsstri 4016 | . 2 ⊢ ≃ ⊆ (Top × Top) |
8 | 7 | brel 5741 | 1 ⊢ (𝐽 ≃ 𝐾 → (𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 class class class wbr 5148 × cxp 5674 ◡ccnv 5675 dom cdm 5676 “ cima 5679 Fn wfn 6538 1oc1o 8461 Topctop 22615 Homeochmeo 23477 ≃ chmph 23478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-hmeo 23479 df-hmph 23480 |
This theorem is referenced by: hmphtop1 23503 hmphtop2 23504 |
Copyright terms: Public domain | W3C validator |