![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hodmval | Structured version Visualization version GIF version |
Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hodmval | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 30252 | . . 3 ⊢ ℋ ∈ V | |
2 | 1, 1 | elmap 8865 | . 2 ⊢ (𝑆 ∈ ( ℋ ↑m ℋ) ↔ 𝑆: ℋ⟶ ℋ) |
3 | 1, 1 | elmap 8865 | . 2 ⊢ (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ) |
4 | fveq1 6891 | . . . . 5 ⊢ (𝑓 = 𝑆 → (𝑓‘𝑥) = (𝑆‘𝑥)) | |
5 | 4 | oveq1d 7424 | . . . 4 ⊢ (𝑓 = 𝑆 → ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)) = ((𝑆‘𝑥) −ℎ (𝑔‘𝑥))) |
6 | 5 | mpteq2dv 5251 | . . 3 ⊢ (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑔‘𝑥)))) |
7 | fveq1 6891 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
8 | 7 | oveq2d 7425 | . . . 4 ⊢ (𝑔 = 𝑇 → ((𝑆‘𝑥) −ℎ (𝑔‘𝑥)) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
9 | 8 | mpteq2dv 5251 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
10 | df-hodif 30985 | . . 3 ⊢ −op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)))) | |
11 | 1 | mptex 7225 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) ∈ V |
12 | 6, 9, 10, 11 | ovmpo 7568 | . 2 ⊢ ((𝑆 ∈ ( ℋ ↑m ℋ) ∧ 𝑇 ∈ ( ℋ ↑m ℋ)) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
13 | 2, 3, 12 | syl2anbr 600 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5232 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 ↑m cmap 8820 ℋchba 30172 −ℎ cmv 30178 −op chod 30193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-hilex 30252 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-map 8822 df-hodif 30985 |
This theorem is referenced by: hodval 30995 hosubcli 31022 |
Copyright terms: Public domain | W3C validator |