| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hodmval | Structured version Visualization version GIF version | ||
| Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hodmval | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30934 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1, 1 | elmap 8846 | . 2 ⊢ (𝑆 ∈ ( ℋ ↑m ℋ) ↔ 𝑆: ℋ⟶ ℋ) |
| 3 | 1, 1 | elmap 8846 | . 2 ⊢ (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ) |
| 4 | fveq1 6859 | . . . . 5 ⊢ (𝑓 = 𝑆 → (𝑓‘𝑥) = (𝑆‘𝑥)) | |
| 5 | 4 | oveq1d 7404 | . . . 4 ⊢ (𝑓 = 𝑆 → ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)) = ((𝑆‘𝑥) −ℎ (𝑔‘𝑥))) |
| 6 | 5 | mpteq2dv 5203 | . . 3 ⊢ (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑔‘𝑥)))) |
| 7 | fveq1 6859 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
| 8 | 7 | oveq2d 7405 | . . . 4 ⊢ (𝑔 = 𝑇 → ((𝑆‘𝑥) −ℎ (𝑔‘𝑥)) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
| 9 | 8 | mpteq2dv 5203 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
| 10 | df-hodif 31667 | . . 3 ⊢ −op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)))) | |
| 11 | 1 | mptex 7199 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) ∈ V |
| 12 | 6, 9, 10, 11 | ovmpo 7551 | . 2 ⊢ ((𝑆 ∈ ( ℋ ↑m ℋ) ∧ 𝑇 ∈ ( ℋ ↑m ℋ)) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
| 13 | 2, 3, 12 | syl2anbr 599 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5190 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 ℋchba 30854 −ℎ cmv 30860 −op chod 30875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-hilex 30934 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-map 8803 df-hodif 31667 |
| This theorem is referenced by: hodval 31677 hosubcli 31704 |
| Copyright terms: Public domain | W3C validator |