![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hodmval | Structured version Visualization version GIF version |
Description: Value of the difference of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hodmval | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 31022 | . . 3 ⊢ ℋ ∈ V | |
2 | 1, 1 | elmap 8925 | . 2 ⊢ (𝑆 ∈ ( ℋ ↑m ℋ) ↔ 𝑆: ℋ⟶ ℋ) |
3 | 1, 1 | elmap 8925 | . 2 ⊢ (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ) |
4 | fveq1 6918 | . . . . 5 ⊢ (𝑓 = 𝑆 → (𝑓‘𝑥) = (𝑆‘𝑥)) | |
5 | 4 | oveq1d 7460 | . . . 4 ⊢ (𝑓 = 𝑆 → ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)) = ((𝑆‘𝑥) −ℎ (𝑔‘𝑥))) |
6 | 5 | mpteq2dv 5271 | . . 3 ⊢ (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑔‘𝑥)))) |
7 | fveq1 6918 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
8 | 7 | oveq2d 7461 | . . . 4 ⊢ (𝑔 = 𝑇 → ((𝑆‘𝑥) −ℎ (𝑔‘𝑥)) = ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) |
9 | 8 | mpteq2dv 5271 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
10 | df-hodif 31755 | . . 3 ⊢ −op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)))) | |
11 | 1 | mptex 7258 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥))) ∈ V |
12 | 6, 9, 10, 11 | ovmpo 7606 | . 2 ⊢ ((𝑆 ∈ ( ℋ ↑m ℋ) ∧ 𝑇 ∈ ( ℋ ↑m ℋ)) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
13 | 2, 3, 12 | syl2anbr 598 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 −op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) −ℎ (𝑇‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ↦ cmpt 5252 ⟶wf 6568 ‘cfv 6572 (class class class)co 7445 ↑m cmap 8880 ℋchba 30942 −ℎ cmv 30948 −op chod 30963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-hilex 31022 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-ov 7448 df-oprab 7449 df-mpo 7450 df-map 8882 df-hodif 31755 |
This theorem is referenced by: hodval 31765 hosubcli 31792 |
Copyright terms: Public domain | W3C validator |