HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  df-homul Structured version   Visualization version   GIF version

Definition df-homul 29994
Description: Define the scalar product with a Hilbert space operator. Definition of [Beran] p. 111. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
df-homul ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
Distinct variable group:   𝑓,𝑔,𝑥

Detailed syntax breakdown of Definition df-homul
StepHypRef Expression
1 chot 29202 . 2 class ·op
2 vf . . 3 setvar 𝑓
3 vg . . 3 setvar 𝑔
4 cc 10800 . . 3 class
5 chba 29182 . . . 4 class
6 cmap 8573 . . . 4 class m
75, 5, 6co 7255 . . 3 class ( ℋ ↑m ℋ)
8 vx . . . 4 setvar 𝑥
92cv 1538 . . . . 5 class 𝑓
108cv 1538 . . . . . 6 class 𝑥
113cv 1538 . . . . . 6 class 𝑔
1210, 11cfv 6418 . . . . 5 class (𝑔𝑥)
13 csm 29184 . . . . 5 class ·
149, 12, 13co 7255 . . . 4 class (𝑓 · (𝑔𝑥))
158, 5, 14cmpt 5153 . . 3 class (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥)))
162, 3, 4, 7, 15cmpo 7257 . 2 class (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
171, 16wceq 1539 1 wff ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
Colors of variables: wff setvar class
This definition is referenced by:  hommval  29999
  Copyright terms: Public domain W3C validator