HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hommval Structured version   Visualization version   GIF version

Theorem hommval 31672
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hommval ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem hommval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30935 . . 3 ℋ ∈ V
21, 1elmap 8847 . 2 (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ)
3 oveq1 7397 . . . 4 (𝑓 = 𝐴 → (𝑓 · (𝑔𝑥)) = (𝐴 · (𝑔𝑥)))
43mpteq2dv 5204 . . 3 (𝑓 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔𝑥))))
5 fveq1 6860 . . . . 5 (𝑔 = 𝑇 → (𝑔𝑥) = (𝑇𝑥))
65oveq2d 7406 . . . 4 (𝑔 = 𝑇 → (𝐴 · (𝑔𝑥)) = (𝐴 · (𝑇𝑥)))
76mpteq2dv 5204 . . 3 (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
8 df-homul 31667 . . 3 ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
91mptex 7200 . . 3 (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))) ∈ V
104, 7, 8, 9ovmpo 7552 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ ( ℋ ↑m ℋ)) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
112, 10sylan2br 595 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  cc 11073  chba 30855   · csm 30857   ·op chot 30875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-homul 31667
This theorem is referenced by:  homval  31677  homulcl  31695
  Copyright terms: Public domain W3C validator