| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hommval | Structured version Visualization version GIF version | ||
| Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hommval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex 30935 | . . 3 ⊢ ℋ ∈ V | |
| 2 | 1, 1 | elmap 8847 | . 2 ⊢ (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ) |
| 3 | oveq1 7397 | . . . 4 ⊢ (𝑓 = 𝐴 → (𝑓 ·ℎ (𝑔‘𝑥)) = (𝐴 ·ℎ (𝑔‘𝑥))) | |
| 4 | 3 | mpteq2dv 5204 | . . 3 ⊢ (𝑓 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑓 ·ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑔‘𝑥)))) |
| 5 | fveq1 6860 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
| 6 | 5 | oveq2d 7406 | . . . 4 ⊢ (𝑔 = 𝑇 → (𝐴 ·ℎ (𝑔‘𝑥)) = (𝐴 ·ℎ (𝑇‘𝑥))) |
| 7 | 6 | mpteq2dv 5204 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) |
| 8 | df-homul 31667 | . . 3 ⊢ ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 ·ℎ (𝑔‘𝑥)))) | |
| 9 | 1 | mptex 7200 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))) ∈ V |
| 10 | 4, 7, 8, 9 | ovmpo 7552 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ ( ℋ ↑m ℋ)) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) |
| 11 | 2, 10 | sylan2br 595 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ℂcc 11073 ℋchba 30855 ·ℎ csm 30857 ·op chot 30875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-hilex 30935 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-homul 31667 |
| This theorem is referenced by: homval 31677 homulcl 31695 |
| Copyright terms: Public domain | W3C validator |