![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hommval | Structured version Visualization version GIF version |
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hommval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 31027 | . . 3 ⊢ ℋ ∈ V | |
2 | 1, 1 | elmap 8909 | . 2 ⊢ (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ) |
3 | oveq1 7437 | . . . 4 ⊢ (𝑓 = 𝐴 → (𝑓 ·ℎ (𝑔‘𝑥)) = (𝐴 ·ℎ (𝑔‘𝑥))) | |
4 | 3 | mpteq2dv 5249 | . . 3 ⊢ (𝑓 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑓 ·ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑔‘𝑥)))) |
5 | fveq1 6905 | . . . . 5 ⊢ (𝑔 = 𝑇 → (𝑔‘𝑥) = (𝑇‘𝑥)) | |
6 | 5 | oveq2d 7446 | . . . 4 ⊢ (𝑔 = 𝑇 → (𝐴 ·ℎ (𝑔‘𝑥)) = (𝐴 ·ℎ (𝑇‘𝑥))) |
7 | 6 | mpteq2dv 5249 | . . 3 ⊢ (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑔‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) |
8 | df-homul 31759 | . . 3 ⊢ ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 ·ℎ (𝑔‘𝑥)))) | |
9 | 1 | mptex 7242 | . . 3 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))) ∈ V |
10 | 4, 7, 8, 9 | ovmpo 7592 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇 ∈ ( ℋ ↑m ℋ)) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) |
11 | 2, 10 | sylan2br 595 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ↦ cmpt 5230 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 ℂcc 11150 ℋchba 30947 ·ℎ csm 30949 ·op chot 30967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-hilex 31027 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-map 8866 df-homul 31759 |
This theorem is referenced by: homval 31769 homulcl 31787 |
Copyright terms: Public domain | W3C validator |