HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hommval Structured version   Visualization version   GIF version

Theorem hommval 29120
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hommval ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem hommval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 28381 . . 3 ℋ ∈ V
21, 1elmap 8124 . 2 (𝑇 ∈ ( ℋ ↑𝑚 ℋ) ↔ 𝑇: ℋ⟶ ℋ)
3 oveq1 6885 . . . 4 (𝑓 = 𝐴 → (𝑓 · (𝑔𝑥)) = (𝐴 · (𝑔𝑥)))
43mpteq2dv 4938 . . 3 (𝑓 = 𝐴 → (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔𝑥))))
5 fveq1 6410 . . . . 5 (𝑔 = 𝑇 → (𝑔𝑥) = (𝑇𝑥))
65oveq2d 6894 . . . 4 (𝑔 = 𝑇 → (𝐴 · (𝑔𝑥)) = (𝐴 · (𝑇𝑥)))
76mpteq2dv 4938 . . 3 (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ (𝐴 · (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
8 df-homul 29115 . . 3 ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑𝑚 ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
91mptex 6715 . . 3 (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))) ∈ V
104, 7, 8, 9ovmpt2 7030 . 2 ((𝐴 ∈ ℂ ∧ 𝑇 ∈ ( ℋ ↑𝑚 ℋ)) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
112, 10sylan2br 589 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  cmpt 4922  wf 6097  cfv 6101  (class class class)co 6878  𝑚 cmap 8095  cc 10222  chba 28301   · csm 28303   ·op chot 28321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-hilex 28381
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-map 8097  df-homul 29115
This theorem is referenced by:  homval  29125  homulcl  29143
  Copyright terms: Public domain W3C validator