HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayetes3i Structured version   Visualization version   GIF version

Theorem mayetes3i 29065
Description: Mayet's equation E^*3, derived from E3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of [Mayet3] p. 1240. (Contributed by NM, 10-May-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayetes3.a 𝐴C
mayetes3.b 𝐵C
mayetes3.c 𝐶C
mayetes3.d 𝐷C
mayetes3.f 𝐹C
mayetes3.g 𝐺C
mayetes3.r 𝑅C
mayetes3.ac 𝐴 ⊆ (⊥‘𝐶)
mayetes3.af 𝐴 ⊆ (⊥‘𝐹)
mayetes3.cf 𝐶 ⊆ (⊥‘𝐹)
mayetes3.ab 𝐴 ⊆ (⊥‘𝐵)
mayetes3.cd 𝐶 ⊆ (⊥‘𝐷)
mayetes3.fg 𝐹 ⊆ (⊥‘𝐺)
mayetes3.rx 𝑅 ⊆ (⊥‘𝑋)
mayetes3.x 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
mayetes3.y 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
mayetes3.z 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
Assertion
Ref Expression
mayetes3i ((𝑋 𝑅) ∩ 𝑌) ⊆ (𝑍 𝑅)

Proof of Theorem mayetes3i
StepHypRef Expression
1 mayetes3.a . . . . . . . . 9 𝐴C
2 mayetes3.c . . . . . . . . 9 𝐶C
31, 2chjcli 28793 . . . . . . . 8 (𝐴 𝐶) ∈ C
4 mayetes3.f . . . . . . . 8 𝐹C
53, 4chjcli 28793 . . . . . . 7 ((𝐴 𝐶) ∨ 𝐹) ∈ C
6 mayetes3.r . . . . . . 7 𝑅C
75, 6chjcomi 28804 . . . . . 6 (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) = (𝑅 ((𝐴 𝐶) ∨ 𝐹))
87eqimssi 3821 . . . . 5 (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ⊆ (𝑅 ((𝐴 𝐶) ∨ 𝐹))
9 mayetes3.b . . . . . . . . . . 11 𝐵C
101, 9chjcli 28793 . . . . . . . . . 10 (𝐴 𝐵) ∈ C
1110, 6chub1i 28805 . . . . . . . . 9 (𝐴 𝐵) ⊆ ((𝐴 𝐵) ∨ 𝑅)
121, 9, 6chjassi 28822 . . . . . . . . 9 ((𝐴 𝐵) ∨ 𝑅) = (𝐴 (𝐵 𝑅))
1311, 12sseqtri 3799 . . . . . . . 8 (𝐴 𝐵) ⊆ (𝐴 (𝐵 𝑅))
149, 6chjcli 28793 . . . . . . . . . 10 (𝐵 𝑅) ∈ C
151, 14chjcli 28793 . . . . . . . . 9 (𝐴 (𝐵 𝑅)) ∈ C
1615, 6chub2i 28806 . . . . . . . 8 (𝐴 (𝐵 𝑅)) ⊆ (𝑅 (𝐴 (𝐵 𝑅)))
1713, 16sstri 3772 . . . . . . 7 (𝐴 𝐵) ⊆ (𝑅 (𝐴 (𝐵 𝑅)))
18 mayetes3.d . . . . . . . . . . 11 𝐷C
192, 18chjcli 28793 . . . . . . . . . 10 (𝐶 𝐷) ∈ C
2019, 6chub1i 28805 . . . . . . . . 9 (𝐶 𝐷) ⊆ ((𝐶 𝐷) ∨ 𝑅)
212, 18, 6chjassi 28822 . . . . . . . . 9 ((𝐶 𝐷) ∨ 𝑅) = (𝐶 (𝐷 𝑅))
2220, 21sseqtri 3799 . . . . . . . 8 (𝐶 𝐷) ⊆ (𝐶 (𝐷 𝑅))
2318, 6chjcli 28793 . . . . . . . . . 10 (𝐷 𝑅) ∈ C
242, 23chjcli 28793 . . . . . . . . 9 (𝐶 (𝐷 𝑅)) ∈ C
2524, 6chub2i 28806 . . . . . . . 8 (𝐶 (𝐷 𝑅)) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))
2622, 25sstri 3772 . . . . . . 7 (𝐶 𝐷) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))
27 ss2in 4002 . . . . . . 7 (((𝐴 𝐵) ⊆ (𝑅 (𝐴 (𝐵 𝑅))) ∧ (𝐶 𝐷) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))) → ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))))
2817, 26, 27mp2an 683 . . . . . 6 ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅))))
29 mayetes3.g . . . . . . . . . 10 𝐺C
304, 29chjcli 28793 . . . . . . . . 9 (𝐹 𝐺) ∈ C
3130, 6chub1i 28805 . . . . . . . 8 (𝐹 𝐺) ⊆ ((𝐹 𝐺) ∨ 𝑅)
324, 29, 6chjassi 28822 . . . . . . . 8 ((𝐹 𝐺) ∨ 𝑅) = (𝐹 (𝐺 𝑅))
3331, 32sseqtri 3799 . . . . . . 7 (𝐹 𝐺) ⊆ (𝐹 (𝐺 𝑅))
3429, 6chjcli 28793 . . . . . . . . 9 (𝐺 𝑅) ∈ C
354, 34chjcli 28793 . . . . . . . 8 (𝐹 (𝐺 𝑅)) ∈ C
3635, 6chub2i 28806 . . . . . . 7 (𝐹 (𝐺 𝑅)) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))
3733, 36sstri 3772 . . . . . 6 (𝐹 𝐺) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))
38 ss2in 4002 . . . . . 6 ((((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∧ (𝐹 𝐺) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))) → (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
3928, 37, 38mp2an 683 . . . . 5 (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
40 ss2in 4002 . . . . 5 (((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ⊆ (𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∧ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))) → ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))))
418, 39, 40mp2an 683 . . . 4 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
4215, 24chincli 28796 . . . . . . 7 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∈ C
4342, 35chincli 28796 . . . . . 6 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))) ∈ C
44 mayetes3.x . . . . . . . . . . 11 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
4544, 5eqeltri 2840 . . . . . . . . . 10 𝑋C
4645choccli 28643 . . . . . . . . 9 (⊥‘𝑋) ∈ C
47 mayetes3.rx . . . . . . . . 9 𝑅 ⊆ (⊥‘𝑋)
486, 46, 47lecmii 28939 . . . . . . . 8 𝑅 𝐶 (⊥‘𝑋)
496, 45cmcm2i 28929 . . . . . . . 8 (𝑅 𝐶 𝑋𝑅 𝐶 (⊥‘𝑋))
5048, 49mpbir 222 . . . . . . 7 𝑅 𝐶 𝑋
5150, 44breqtri 4836 . . . . . 6 𝑅 𝐶 ((𝐴 𝐶) ∨ 𝐹)
526, 9chub2i 28806 . . . . . . . . . 10 𝑅 ⊆ (𝐵 𝑅)
5314, 1chub2i 28806 . . . . . . . . . 10 (𝐵 𝑅) ⊆ (𝐴 (𝐵 𝑅))
5452, 53sstri 3772 . . . . . . . . 9 𝑅 ⊆ (𝐴 (𝐵 𝑅))
556, 15, 54lecmii 28939 . . . . . . . 8 𝑅 𝐶 (𝐴 (𝐵 𝑅))
566, 18chub2i 28806 . . . . . . . . . 10 𝑅 ⊆ (𝐷 𝑅)
5723, 2chub2i 28806 . . . . . . . . . 10 (𝐷 𝑅) ⊆ (𝐶 (𝐷 𝑅))
5856, 57sstri 3772 . . . . . . . . 9 𝑅 ⊆ (𝐶 (𝐷 𝑅))
596, 24, 58lecmii 28939 . . . . . . . 8 𝑅 𝐶 (𝐶 (𝐷 𝑅))
606, 15, 24, 55, 59cm2mi 28962 . . . . . . 7 𝑅 𝐶 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))
616, 29chub2i 28806 . . . . . . . . 9 𝑅 ⊆ (𝐺 𝑅)
6234, 4chub2i 28806 . . . . . . . . 9 (𝐺 𝑅) ⊆ (𝐹 (𝐺 𝑅))
6361, 62sstri 3772 . . . . . . . 8 𝑅 ⊆ (𝐹 (𝐺 𝑅))
646, 35, 63lecmii 28939 . . . . . . 7 𝑅 𝐶 (𝐹 (𝐺 𝑅))
656, 42, 35, 60, 64cm2mi 28962 . . . . . 6 𝑅 𝐶 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))
666, 5, 43, 51, 65fh3i 28959 . . . . 5 (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) = ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
676, 42, 35, 60, 64fh3i 28959 . . . . . . 7 (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) = ((𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
686, 15, 24, 55, 59fh3i 28959 . . . . . . . 8 (𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) = ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅))))
6968ineq1i 3974 . . . . . . 7 ((𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))) = (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
7067, 69eqtri 2787 . . . . . 6 (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) = (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
7170ineq2i 3975 . . . . 5 ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) = ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
7266, 71eqtr2i 2788 . . . 4 ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))) = (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
7341, 72sseqtri 3799 . . 3 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
749, 18chjcli 28793 . . . . . 6 (𝐵 𝐷) ∈ C
7574, 29chjcli 28793 . . . . 5 ((𝐵 𝐷) ∨ 𝐺) ∈ C
766, 75chub2i 28806 . . . 4 𝑅 ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
77 mayetes3.ac . . . . 5 𝐴 ⊆ (⊥‘𝐶)
78 mayetes3.af . . . . 5 𝐴 ⊆ (⊥‘𝐹)
79 mayetes3.cf . . . . 5 𝐶 ⊆ (⊥‘𝐹)
80 mayetes3.ab . . . . . . 7 𝐴 ⊆ (⊥‘𝐵)
811, 2chub1i 28805 . . . . . . . . . . 11 𝐴 ⊆ (𝐴 𝐶)
823, 4chub1i 28805 . . . . . . . . . . . 12 (𝐴 𝐶) ⊆ ((𝐴 𝐶) ∨ 𝐹)
8382, 44sseqtr4i 3800 . . . . . . . . . . 11 (𝐴 𝐶) ⊆ 𝑋
8481, 83sstri 3772 . . . . . . . . . 10 𝐴𝑋
851, 45chsscon3i 28797 . . . . . . . . . 10 (𝐴𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐴))
8684, 85mpbi 221 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐴)
8747, 86sstri 3772 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐴)
886, 1chsscon2i 28799 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝑅))
8987, 88mpbi 221 . . . . . . 7 𝐴 ⊆ (⊥‘𝑅)
9080, 89ssini 3997 . . . . . 6 𝐴 ⊆ ((⊥‘𝐵) ∩ (⊥‘𝑅))
919, 6chdmj1i 28817 . . . . . 6 (⊥‘(𝐵 𝑅)) = ((⊥‘𝐵) ∩ (⊥‘𝑅))
9290, 91sseqtr4i 3800 . . . . 5 𝐴 ⊆ (⊥‘(𝐵 𝑅))
93 mayetes3.cd . . . . . . 7 𝐶 ⊆ (⊥‘𝐷)
942, 1chub2i 28806 . . . . . . . . . . 11 𝐶 ⊆ (𝐴 𝐶)
9594, 83sstri 3772 . . . . . . . . . 10 𝐶𝑋
962, 45chsscon3i 28797 . . . . . . . . . 10 (𝐶𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐶))
9795, 96mpbi 221 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐶)
9847, 97sstri 3772 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐶)
996, 2chsscon2i 28799 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐶) ↔ 𝐶 ⊆ (⊥‘𝑅))
10098, 99mpbi 221 . . . . . . 7 𝐶 ⊆ (⊥‘𝑅)
10193, 100ssini 3997 . . . . . 6 𝐶 ⊆ ((⊥‘𝐷) ∩ (⊥‘𝑅))
10218, 6chdmj1i 28817 . . . . . 6 (⊥‘(𝐷 𝑅)) = ((⊥‘𝐷) ∩ (⊥‘𝑅))
103101, 102sseqtr4i 3800 . . . . 5 𝐶 ⊆ (⊥‘(𝐷 𝑅))
104 mayetes3.fg . . . . . . 7 𝐹 ⊆ (⊥‘𝐺)
1054, 3chub2i 28806 . . . . . . . . . . 11 𝐹 ⊆ ((𝐴 𝐶) ∨ 𝐹)
106105, 44sseqtr4i 3800 . . . . . . . . . 10 𝐹𝑋
1074, 45chsscon3i 28797 . . . . . . . . . 10 (𝐹𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐹))
108106, 107mpbi 221 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐹)
10947, 108sstri 3772 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐹)
1106, 4chsscon2i 28799 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐹) ↔ 𝐹 ⊆ (⊥‘𝑅))
111109, 110mpbi 221 . . . . . . 7 𝐹 ⊆ (⊥‘𝑅)
112104, 111ssini 3997 . . . . . 6 𝐹 ⊆ ((⊥‘𝐺) ∩ (⊥‘𝑅))
11329, 6chdmj1i 28817 . . . . . 6 (⊥‘(𝐺 𝑅)) = ((⊥‘𝐺) ∩ (⊥‘𝑅))
114112, 113sseqtr4i 3800 . . . . 5 𝐹 ⊆ (⊥‘(𝐺 𝑅))
115 eqid 2765 . . . . 5 ((𝐴 𝐶) ∨ 𝐹) = ((𝐴 𝐶) ∨ 𝐹)
116 eqid 2765 . . . . 5 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))) = (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))
11774, 29, 6chjjdiri 28860 . . . . . 6 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) = (((𝐵 𝐷) ∨ 𝑅) ∨ (𝐺 𝑅))
1189, 18, 6chjjdiri 28860 . . . . . . 7 ((𝐵 𝐷) ∨ 𝑅) = ((𝐵 𝑅) ∨ (𝐷 𝑅))
119118oveq1i 6856 . . . . . 6 (((𝐵 𝐷) ∨ 𝑅) ∨ (𝐺 𝑅)) = (((𝐵 𝑅) ∨ (𝐷 𝑅)) ∨ (𝐺 𝑅))
120117, 119eqtri 2787 . . . . 5 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) = (((𝐵 𝑅) ∨ (𝐷 𝑅)) ∨ (𝐺 𝑅))
1211, 14, 2, 23, 4, 34, 77, 78, 79, 92, 103, 114, 115, 116, 120mayete3i 29064 . . . 4 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
1225, 43chincli 28796 . . . . 5 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ∈ C
12375, 6chjcli 28793 . . . . 5 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) ∈ C
1246, 122, 123chlubii 28808 . . . 4 ((𝑅 ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) ∧ (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)) → (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅))
12576, 121, 124mp2an 683 . . 3 (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
12673, 125sstri 3772 . 2 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
12744oveq1i 6856 . . 3 (𝑋 𝑅) = (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅)
128 mayetes3.y . . 3 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
129127, 128ineq12i 3976 . 2 ((𝑋 𝑅) ∩ 𝑌) = ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)))
130 mayetes3.z . . 3 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
131130oveq1i 6856 . 2 (𝑍 𝑅) = (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
132126, 129, 1313sstr4i 3806 1 ((𝑋 𝑅) ∩ 𝑌) ⊆ (𝑍 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1652  wcel 2155  cin 3733  wss 3734   class class class wbr 4811  cfv 6070  (class class class)co 6846   C cch 28263  cort 28264   chj 28267   𝐶 ccm 28270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cc 9514  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273  ax-hilex 28333  ax-hfvadd 28334  ax-hvcom 28335  ax-hvass 28336  ax-hv0cl 28337  ax-hvaddid 28338  ax-hfvmul 28339  ax-hvmulid 28340  ax-hvmulass 28341  ax-hvdistr1 28342  ax-hvdistr2 28343  ax-hvmul0 28344  ax-hfi 28413  ax-his1 28416  ax-his2 28417  ax-his3 28418  ax-his4 28419  ax-hcompl 28536
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-omul 7773  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-acn 9023  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-seq 13014  df-exp 13073  df-hash 13327  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-clim 14518  df-rlim 14519  df-sum 14716  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-cn 21325  df-cnp 21326  df-lm 21327  df-haus 21413  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cfil 23346  df-cau 23347  df-cmet 23348  df-grpo 27825  df-gid 27826  df-ginv 27827  df-gdiv 27828  df-ablo 27877  df-vc 27891  df-nv 27924  df-va 27927  df-ba 27928  df-sm 27929  df-0v 27930  df-vs 27931  df-nmcv 27932  df-ims 27933  df-dip 28033  df-ssp 28054  df-ph 28145  df-cbn 28196  df-hnorm 28302  df-hba 28303  df-hvsub 28305  df-hlim 28306  df-hcau 28307  df-sh 28541  df-ch 28555  df-oc 28586  df-ch0 28587  df-shs 28644  df-chj 28646  df-pjh 28731  df-cm 28919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator