HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayetes3i Structured version   Visualization version   GIF version

Theorem mayetes3i 31532
Description: Mayet's equation E^*3, derived from E3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of [Mayet3] p. 1240. (Contributed by NM, 10-May-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayetes3.a 𝐴C
mayetes3.b 𝐵C
mayetes3.c 𝐶C
mayetes3.d 𝐷C
mayetes3.f 𝐹C
mayetes3.g 𝐺C
mayetes3.r 𝑅C
mayetes3.ac 𝐴 ⊆ (⊥‘𝐶)
mayetes3.af 𝐴 ⊆ (⊥‘𝐹)
mayetes3.cf 𝐶 ⊆ (⊥‘𝐹)
mayetes3.ab 𝐴 ⊆ (⊥‘𝐵)
mayetes3.cd 𝐶 ⊆ (⊥‘𝐷)
mayetes3.fg 𝐹 ⊆ (⊥‘𝐺)
mayetes3.rx 𝑅 ⊆ (⊥‘𝑋)
mayetes3.x 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
mayetes3.y 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
mayetes3.z 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
Assertion
Ref Expression
mayetes3i ((𝑋 𝑅) ∩ 𝑌) ⊆ (𝑍 𝑅)

Proof of Theorem mayetes3i
StepHypRef Expression
1 mayetes3.a . . . . . . . . 9 𝐴C
2 mayetes3.c . . . . . . . . 9 𝐶C
31, 2chjcli 31260 . . . . . . . 8 (𝐴 𝐶) ∈ C
4 mayetes3.f . . . . . . . 8 𝐹C
53, 4chjcli 31260 . . . . . . 7 ((𝐴 𝐶) ∨ 𝐹) ∈ C
6 mayetes3.r . . . . . . 7 𝑅C
75, 6chjcomi 31271 . . . . . 6 (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) = (𝑅 ((𝐴 𝐶) ∨ 𝐹))
87eqimssi 4038 . . . . 5 (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ⊆ (𝑅 ((𝐴 𝐶) ∨ 𝐹))
9 mayetes3.b . . . . . . . . . . 11 𝐵C
101, 9chjcli 31260 . . . . . . . . . 10 (𝐴 𝐵) ∈ C
1110, 6chub1i 31272 . . . . . . . . 9 (𝐴 𝐵) ⊆ ((𝐴 𝐵) ∨ 𝑅)
121, 9, 6chjassi 31289 . . . . . . . . 9 ((𝐴 𝐵) ∨ 𝑅) = (𝐴 (𝐵 𝑅))
1311, 12sseqtri 4014 . . . . . . . 8 (𝐴 𝐵) ⊆ (𝐴 (𝐵 𝑅))
149, 6chjcli 31260 . . . . . . . . . 10 (𝐵 𝑅) ∈ C
151, 14chjcli 31260 . . . . . . . . 9 (𝐴 (𝐵 𝑅)) ∈ C
1615, 6chub2i 31273 . . . . . . . 8 (𝐴 (𝐵 𝑅)) ⊆ (𝑅 (𝐴 (𝐵 𝑅)))
1713, 16sstri 3987 . . . . . . 7 (𝐴 𝐵) ⊆ (𝑅 (𝐴 (𝐵 𝑅)))
18 mayetes3.d . . . . . . . . . . 11 𝐷C
192, 18chjcli 31260 . . . . . . . . . 10 (𝐶 𝐷) ∈ C
2019, 6chub1i 31272 . . . . . . . . 9 (𝐶 𝐷) ⊆ ((𝐶 𝐷) ∨ 𝑅)
212, 18, 6chjassi 31289 . . . . . . . . 9 ((𝐶 𝐷) ∨ 𝑅) = (𝐶 (𝐷 𝑅))
2220, 21sseqtri 4014 . . . . . . . 8 (𝐶 𝐷) ⊆ (𝐶 (𝐷 𝑅))
2318, 6chjcli 31260 . . . . . . . . . 10 (𝐷 𝑅) ∈ C
242, 23chjcli 31260 . . . . . . . . 9 (𝐶 (𝐷 𝑅)) ∈ C
2524, 6chub2i 31273 . . . . . . . 8 (𝐶 (𝐷 𝑅)) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))
2622, 25sstri 3987 . . . . . . 7 (𝐶 𝐷) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))
27 ss2in 4232 . . . . . . 7 (((𝐴 𝐵) ⊆ (𝑅 (𝐴 (𝐵 𝑅))) ∧ (𝐶 𝐷) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))) → ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))))
2817, 26, 27mp2an 691 . . . . . 6 ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅))))
29 mayetes3.g . . . . . . . . . 10 𝐺C
304, 29chjcli 31260 . . . . . . . . 9 (𝐹 𝐺) ∈ C
3130, 6chub1i 31272 . . . . . . . 8 (𝐹 𝐺) ⊆ ((𝐹 𝐺) ∨ 𝑅)
324, 29, 6chjassi 31289 . . . . . . . 8 ((𝐹 𝐺) ∨ 𝑅) = (𝐹 (𝐺 𝑅))
3331, 32sseqtri 4014 . . . . . . 7 (𝐹 𝐺) ⊆ (𝐹 (𝐺 𝑅))
3429, 6chjcli 31260 . . . . . . . . 9 (𝐺 𝑅) ∈ C
354, 34chjcli 31260 . . . . . . . 8 (𝐹 (𝐺 𝑅)) ∈ C
3635, 6chub2i 31273 . . . . . . 7 (𝐹 (𝐺 𝑅)) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))
3733, 36sstri 3987 . . . . . 6 (𝐹 𝐺) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))
38 ss2in 4232 . . . . . 6 ((((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∧ (𝐹 𝐺) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))) → (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
3928, 37, 38mp2an 691 . . . . 5 (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
40 ss2in 4232 . . . . 5 (((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ⊆ (𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∧ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))) → ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))))
418, 39, 40mp2an 691 . . . 4 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
4215, 24chincli 31263 . . . . . . 7 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∈ C
4342, 35chincli 31263 . . . . . 6 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))) ∈ C
44 mayetes3.x . . . . . . . . . . 11 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
4544, 5eqeltri 2824 . . . . . . . . . 10 𝑋C
4645choccli 31110 . . . . . . . . 9 (⊥‘𝑋) ∈ C
47 mayetes3.rx . . . . . . . . 9 𝑅 ⊆ (⊥‘𝑋)
486, 46, 47lecmii 31406 . . . . . . . 8 𝑅 𝐶 (⊥‘𝑋)
496, 45cmcm2i 31396 . . . . . . . 8 (𝑅 𝐶 𝑋𝑅 𝐶 (⊥‘𝑋))
5048, 49mpbir 230 . . . . . . 7 𝑅 𝐶 𝑋
5150, 44breqtri 5167 . . . . . 6 𝑅 𝐶 ((𝐴 𝐶) ∨ 𝐹)
526, 9chub2i 31273 . . . . . . . . . 10 𝑅 ⊆ (𝐵 𝑅)
5314, 1chub2i 31273 . . . . . . . . . 10 (𝐵 𝑅) ⊆ (𝐴 (𝐵 𝑅))
5452, 53sstri 3987 . . . . . . . . 9 𝑅 ⊆ (𝐴 (𝐵 𝑅))
556, 15, 54lecmii 31406 . . . . . . . 8 𝑅 𝐶 (𝐴 (𝐵 𝑅))
566, 18chub2i 31273 . . . . . . . . . 10 𝑅 ⊆ (𝐷 𝑅)
5723, 2chub2i 31273 . . . . . . . . . 10 (𝐷 𝑅) ⊆ (𝐶 (𝐷 𝑅))
5856, 57sstri 3987 . . . . . . . . 9 𝑅 ⊆ (𝐶 (𝐷 𝑅))
596, 24, 58lecmii 31406 . . . . . . . 8 𝑅 𝐶 (𝐶 (𝐷 𝑅))
606, 15, 24, 55, 59cm2mi 31429 . . . . . . 7 𝑅 𝐶 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))
616, 29chub2i 31273 . . . . . . . . 9 𝑅 ⊆ (𝐺 𝑅)
6234, 4chub2i 31273 . . . . . . . . 9 (𝐺 𝑅) ⊆ (𝐹 (𝐺 𝑅))
6361, 62sstri 3987 . . . . . . . 8 𝑅 ⊆ (𝐹 (𝐺 𝑅))
646, 35, 63lecmii 31406 . . . . . . 7 𝑅 𝐶 (𝐹 (𝐺 𝑅))
656, 42, 35, 60, 64cm2mi 31429 . . . . . 6 𝑅 𝐶 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))
666, 5, 43, 51, 65fh3i 31426 . . . . 5 (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) = ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
676, 42, 35, 60, 64fh3i 31426 . . . . . . 7 (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) = ((𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
686, 15, 24, 55, 59fh3i 31426 . . . . . . . 8 (𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) = ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅))))
6968ineq1i 4204 . . . . . . 7 ((𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))) = (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
7067, 69eqtri 2755 . . . . . 6 (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) = (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
7170ineq2i 4205 . . . . 5 ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) = ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
7266, 71eqtr2i 2756 . . . 4 ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))) = (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
7341, 72sseqtri 4014 . . 3 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
749, 18chjcli 31260 . . . . . 6 (𝐵 𝐷) ∈ C
7574, 29chjcli 31260 . . . . 5 ((𝐵 𝐷) ∨ 𝐺) ∈ C
766, 75chub2i 31273 . . . 4 𝑅 ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
77 mayetes3.ac . . . . 5 𝐴 ⊆ (⊥‘𝐶)
78 mayetes3.af . . . . 5 𝐴 ⊆ (⊥‘𝐹)
79 mayetes3.cf . . . . 5 𝐶 ⊆ (⊥‘𝐹)
80 mayetes3.ab . . . . . . 7 𝐴 ⊆ (⊥‘𝐵)
811, 2chub1i 31272 . . . . . . . . . . 11 𝐴 ⊆ (𝐴 𝐶)
823, 4chub1i 31272 . . . . . . . . . . . 12 (𝐴 𝐶) ⊆ ((𝐴 𝐶) ∨ 𝐹)
8382, 44sseqtrri 4015 . . . . . . . . . . 11 (𝐴 𝐶) ⊆ 𝑋
8481, 83sstri 3987 . . . . . . . . . 10 𝐴𝑋
851, 45chsscon3i 31264 . . . . . . . . . 10 (𝐴𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐴))
8684, 85mpbi 229 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐴)
8747, 86sstri 3987 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐴)
886, 1chsscon2i 31266 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝑅))
8987, 88mpbi 229 . . . . . . 7 𝐴 ⊆ (⊥‘𝑅)
9080, 89ssini 4227 . . . . . 6 𝐴 ⊆ ((⊥‘𝐵) ∩ (⊥‘𝑅))
919, 6chdmj1i 31284 . . . . . 6 (⊥‘(𝐵 𝑅)) = ((⊥‘𝐵) ∩ (⊥‘𝑅))
9290, 91sseqtrri 4015 . . . . 5 𝐴 ⊆ (⊥‘(𝐵 𝑅))
93 mayetes3.cd . . . . . . 7 𝐶 ⊆ (⊥‘𝐷)
942, 1chub2i 31273 . . . . . . . . . . 11 𝐶 ⊆ (𝐴 𝐶)
9594, 83sstri 3987 . . . . . . . . . 10 𝐶𝑋
962, 45chsscon3i 31264 . . . . . . . . . 10 (𝐶𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐶))
9795, 96mpbi 229 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐶)
9847, 97sstri 3987 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐶)
996, 2chsscon2i 31266 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐶) ↔ 𝐶 ⊆ (⊥‘𝑅))
10098, 99mpbi 229 . . . . . . 7 𝐶 ⊆ (⊥‘𝑅)
10193, 100ssini 4227 . . . . . 6 𝐶 ⊆ ((⊥‘𝐷) ∩ (⊥‘𝑅))
10218, 6chdmj1i 31284 . . . . . 6 (⊥‘(𝐷 𝑅)) = ((⊥‘𝐷) ∩ (⊥‘𝑅))
103101, 102sseqtrri 4015 . . . . 5 𝐶 ⊆ (⊥‘(𝐷 𝑅))
104 mayetes3.fg . . . . . . 7 𝐹 ⊆ (⊥‘𝐺)
1054, 3chub2i 31273 . . . . . . . . . . 11 𝐹 ⊆ ((𝐴 𝐶) ∨ 𝐹)
106105, 44sseqtrri 4015 . . . . . . . . . 10 𝐹𝑋
1074, 45chsscon3i 31264 . . . . . . . . . 10 (𝐹𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐹))
108106, 107mpbi 229 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐹)
10947, 108sstri 3987 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐹)
1106, 4chsscon2i 31266 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐹) ↔ 𝐹 ⊆ (⊥‘𝑅))
111109, 110mpbi 229 . . . . . . 7 𝐹 ⊆ (⊥‘𝑅)
112104, 111ssini 4227 . . . . . 6 𝐹 ⊆ ((⊥‘𝐺) ∩ (⊥‘𝑅))
11329, 6chdmj1i 31284 . . . . . 6 (⊥‘(𝐺 𝑅)) = ((⊥‘𝐺) ∩ (⊥‘𝑅))
114112, 113sseqtrri 4015 . . . . 5 𝐹 ⊆ (⊥‘(𝐺 𝑅))
115 eqid 2727 . . . . 5 ((𝐴 𝐶) ∨ 𝐹) = ((𝐴 𝐶) ∨ 𝐹)
116 eqid 2727 . . . . 5 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))) = (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))
11774, 29, 6chjjdiri 31327 . . . . . 6 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) = (((𝐵 𝐷) ∨ 𝑅) ∨ (𝐺 𝑅))
1189, 18, 6chjjdiri 31327 . . . . . . 7 ((𝐵 𝐷) ∨ 𝑅) = ((𝐵 𝑅) ∨ (𝐷 𝑅))
119118oveq1i 7424 . . . . . 6 (((𝐵 𝐷) ∨ 𝑅) ∨ (𝐺 𝑅)) = (((𝐵 𝑅) ∨ (𝐷 𝑅)) ∨ (𝐺 𝑅))
120117, 119eqtri 2755 . . . . 5 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) = (((𝐵 𝑅) ∨ (𝐷 𝑅)) ∨ (𝐺 𝑅))
1211, 14, 2, 23, 4, 34, 77, 78, 79, 92, 103, 114, 115, 116, 120mayete3i 31531 . . . 4 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
1225, 43chincli 31263 . . . . 5 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ∈ C
12375, 6chjcli 31260 . . . . 5 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) ∈ C
1246, 122, 123chlubii 31275 . . . 4 ((𝑅 ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) ∧ (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)) → (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅))
12576, 121, 124mp2an 691 . . 3 (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
12673, 125sstri 3987 . 2 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
12744oveq1i 7424 . . 3 (𝑋 𝑅) = (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅)
128 mayetes3.y . . 3 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
129127, 128ineq12i 4206 . 2 ((𝑋 𝑅) ∩ 𝑌) = ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)))
130 mayetes3.z . . 3 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
131130oveq1i 7424 . 2 (𝑍 𝑅) = (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
132126, 129, 1313sstr4i 4021 1 ((𝑋 𝑅) ∩ 𝑌) ⊆ (𝑍 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  cin 3943  wss 3944   class class class wbr 5142  cfv 6542  (class class class)co 7414   C cch 30732  cort 30733   chj 30736   𝐶 ccm 30739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cc 10452  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211  ax-mulf 11212  ax-hilex 30802  ax-hfvadd 30803  ax-hvcom 30804  ax-hvass 30805  ax-hv0cl 30806  ax-hvaddid 30807  ax-hfvmul 30808  ax-hvmulid 30809  ax-hvmulass 30810  ax-hvdistr1 30811  ax-hvdistr2 30812  ax-hvmul0 30813  ax-hfi 30882  ax-his1 30885  ax-his2 30886  ax-his3 30887  ax-his4 30888  ax-hcompl 31005
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-rlim 15459  df-sum 15659  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-cn 23124  df-cnp 23125  df-lm 23126  df-haus 23212  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cfil 25176  df-cau 25177  df-cmet 25178  df-grpo 30296  df-gid 30297  df-ginv 30298  df-gdiv 30299  df-ablo 30348  df-vc 30362  df-nv 30395  df-va 30398  df-ba 30399  df-sm 30400  df-0v 30401  df-vs 30402  df-nmcv 30403  df-ims 30404  df-dip 30504  df-ssp 30525  df-ph 30616  df-cbn 30666  df-hnorm 30771  df-hba 30772  df-hvsub 30774  df-hlim 30775  df-hcau 30776  df-sh 31010  df-ch 31024  df-oc 31055  df-ch0 31056  df-shs 31111  df-chj 31113  df-pjh 31198  df-cm 31386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator