HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayetes3i Structured version   Visualization version   GIF version

Theorem mayetes3i 29992
Description: Mayet's equation E^*3, derived from E3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of [Mayet3] p. 1240. (Contributed by NM, 10-May-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayetes3.a 𝐴C
mayetes3.b 𝐵C
mayetes3.c 𝐶C
mayetes3.d 𝐷C
mayetes3.f 𝐹C
mayetes3.g 𝐺C
mayetes3.r 𝑅C
mayetes3.ac 𝐴 ⊆ (⊥‘𝐶)
mayetes3.af 𝐴 ⊆ (⊥‘𝐹)
mayetes3.cf 𝐶 ⊆ (⊥‘𝐹)
mayetes3.ab 𝐴 ⊆ (⊥‘𝐵)
mayetes3.cd 𝐶 ⊆ (⊥‘𝐷)
mayetes3.fg 𝐹 ⊆ (⊥‘𝐺)
mayetes3.rx 𝑅 ⊆ (⊥‘𝑋)
mayetes3.x 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
mayetes3.y 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
mayetes3.z 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
Assertion
Ref Expression
mayetes3i ((𝑋 𝑅) ∩ 𝑌) ⊆ (𝑍 𝑅)

Proof of Theorem mayetes3i
StepHypRef Expression
1 mayetes3.a . . . . . . . . 9 𝐴C
2 mayetes3.c . . . . . . . . 9 𝐶C
31, 2chjcli 29720 . . . . . . . 8 (𝐴 𝐶) ∈ C
4 mayetes3.f . . . . . . . 8 𝐹C
53, 4chjcli 29720 . . . . . . 7 ((𝐴 𝐶) ∨ 𝐹) ∈ C
6 mayetes3.r . . . . . . 7 𝑅C
75, 6chjcomi 29731 . . . . . 6 (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) = (𝑅 ((𝐴 𝐶) ∨ 𝐹))
87eqimssi 3975 . . . . 5 (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ⊆ (𝑅 ((𝐴 𝐶) ∨ 𝐹))
9 mayetes3.b . . . . . . . . . . 11 𝐵C
101, 9chjcli 29720 . . . . . . . . . 10 (𝐴 𝐵) ∈ C
1110, 6chub1i 29732 . . . . . . . . 9 (𝐴 𝐵) ⊆ ((𝐴 𝐵) ∨ 𝑅)
121, 9, 6chjassi 29749 . . . . . . . . 9 ((𝐴 𝐵) ∨ 𝑅) = (𝐴 (𝐵 𝑅))
1311, 12sseqtri 3953 . . . . . . . 8 (𝐴 𝐵) ⊆ (𝐴 (𝐵 𝑅))
149, 6chjcli 29720 . . . . . . . . . 10 (𝐵 𝑅) ∈ C
151, 14chjcli 29720 . . . . . . . . 9 (𝐴 (𝐵 𝑅)) ∈ C
1615, 6chub2i 29733 . . . . . . . 8 (𝐴 (𝐵 𝑅)) ⊆ (𝑅 (𝐴 (𝐵 𝑅)))
1713, 16sstri 3926 . . . . . . 7 (𝐴 𝐵) ⊆ (𝑅 (𝐴 (𝐵 𝑅)))
18 mayetes3.d . . . . . . . . . . 11 𝐷C
192, 18chjcli 29720 . . . . . . . . . 10 (𝐶 𝐷) ∈ C
2019, 6chub1i 29732 . . . . . . . . 9 (𝐶 𝐷) ⊆ ((𝐶 𝐷) ∨ 𝑅)
212, 18, 6chjassi 29749 . . . . . . . . 9 ((𝐶 𝐷) ∨ 𝑅) = (𝐶 (𝐷 𝑅))
2220, 21sseqtri 3953 . . . . . . . 8 (𝐶 𝐷) ⊆ (𝐶 (𝐷 𝑅))
2318, 6chjcli 29720 . . . . . . . . . 10 (𝐷 𝑅) ∈ C
242, 23chjcli 29720 . . . . . . . . 9 (𝐶 (𝐷 𝑅)) ∈ C
2524, 6chub2i 29733 . . . . . . . 8 (𝐶 (𝐷 𝑅)) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))
2622, 25sstri 3926 . . . . . . 7 (𝐶 𝐷) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))
27 ss2in 4167 . . . . . . 7 (((𝐴 𝐵) ⊆ (𝑅 (𝐴 (𝐵 𝑅))) ∧ (𝐶 𝐷) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))) → ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))))
2817, 26, 27mp2an 688 . . . . . 6 ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅))))
29 mayetes3.g . . . . . . . . . 10 𝐺C
304, 29chjcli 29720 . . . . . . . . 9 (𝐹 𝐺) ∈ C
3130, 6chub1i 29732 . . . . . . . 8 (𝐹 𝐺) ⊆ ((𝐹 𝐺) ∨ 𝑅)
324, 29, 6chjassi 29749 . . . . . . . 8 ((𝐹 𝐺) ∨ 𝑅) = (𝐹 (𝐺 𝑅))
3331, 32sseqtri 3953 . . . . . . 7 (𝐹 𝐺) ⊆ (𝐹 (𝐺 𝑅))
3429, 6chjcli 29720 . . . . . . . . 9 (𝐺 𝑅) ∈ C
354, 34chjcli 29720 . . . . . . . 8 (𝐹 (𝐺 𝑅)) ∈ C
3635, 6chub2i 29733 . . . . . . 7 (𝐹 (𝐺 𝑅)) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))
3733, 36sstri 3926 . . . . . 6 (𝐹 𝐺) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))
38 ss2in 4167 . . . . . 6 ((((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∧ (𝐹 𝐺) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))) → (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
3928, 37, 38mp2an 688 . . . . 5 (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
40 ss2in 4167 . . . . 5 (((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ⊆ (𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∧ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))) → ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))))
418, 39, 40mp2an 688 . . . 4 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
4215, 24chincli 29723 . . . . . . 7 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∈ C
4342, 35chincli 29723 . . . . . 6 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))) ∈ C
44 mayetes3.x . . . . . . . . . . 11 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
4544, 5eqeltri 2835 . . . . . . . . . 10 𝑋C
4645choccli 29570 . . . . . . . . 9 (⊥‘𝑋) ∈ C
47 mayetes3.rx . . . . . . . . 9 𝑅 ⊆ (⊥‘𝑋)
486, 46, 47lecmii 29866 . . . . . . . 8 𝑅 𝐶 (⊥‘𝑋)
496, 45cmcm2i 29856 . . . . . . . 8 (𝑅 𝐶 𝑋𝑅 𝐶 (⊥‘𝑋))
5048, 49mpbir 230 . . . . . . 7 𝑅 𝐶 𝑋
5150, 44breqtri 5095 . . . . . 6 𝑅 𝐶 ((𝐴 𝐶) ∨ 𝐹)
526, 9chub2i 29733 . . . . . . . . . 10 𝑅 ⊆ (𝐵 𝑅)
5314, 1chub2i 29733 . . . . . . . . . 10 (𝐵 𝑅) ⊆ (𝐴 (𝐵 𝑅))
5452, 53sstri 3926 . . . . . . . . 9 𝑅 ⊆ (𝐴 (𝐵 𝑅))
556, 15, 54lecmii 29866 . . . . . . . 8 𝑅 𝐶 (𝐴 (𝐵 𝑅))
566, 18chub2i 29733 . . . . . . . . . 10 𝑅 ⊆ (𝐷 𝑅)
5723, 2chub2i 29733 . . . . . . . . . 10 (𝐷 𝑅) ⊆ (𝐶 (𝐷 𝑅))
5856, 57sstri 3926 . . . . . . . . 9 𝑅 ⊆ (𝐶 (𝐷 𝑅))
596, 24, 58lecmii 29866 . . . . . . . 8 𝑅 𝐶 (𝐶 (𝐷 𝑅))
606, 15, 24, 55, 59cm2mi 29889 . . . . . . 7 𝑅 𝐶 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))
616, 29chub2i 29733 . . . . . . . . 9 𝑅 ⊆ (𝐺 𝑅)
6234, 4chub2i 29733 . . . . . . . . 9 (𝐺 𝑅) ⊆ (𝐹 (𝐺 𝑅))
6361, 62sstri 3926 . . . . . . . 8 𝑅 ⊆ (𝐹 (𝐺 𝑅))
646, 35, 63lecmii 29866 . . . . . . 7 𝑅 𝐶 (𝐹 (𝐺 𝑅))
656, 42, 35, 60, 64cm2mi 29889 . . . . . 6 𝑅 𝐶 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))
666, 5, 43, 51, 65fh3i 29886 . . . . 5 (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) = ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
676, 42, 35, 60, 64fh3i 29886 . . . . . . 7 (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) = ((𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
686, 15, 24, 55, 59fh3i 29886 . . . . . . . 8 (𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) = ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅))))
6968ineq1i 4139 . . . . . . 7 ((𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))) = (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
7067, 69eqtri 2766 . . . . . 6 (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) = (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
7170ineq2i 4140 . . . . 5 ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) = ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
7266, 71eqtr2i 2767 . . . 4 ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))) = (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
7341, 72sseqtri 3953 . . 3 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
749, 18chjcli 29720 . . . . . 6 (𝐵 𝐷) ∈ C
7574, 29chjcli 29720 . . . . 5 ((𝐵 𝐷) ∨ 𝐺) ∈ C
766, 75chub2i 29733 . . . 4 𝑅 ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
77 mayetes3.ac . . . . 5 𝐴 ⊆ (⊥‘𝐶)
78 mayetes3.af . . . . 5 𝐴 ⊆ (⊥‘𝐹)
79 mayetes3.cf . . . . 5 𝐶 ⊆ (⊥‘𝐹)
80 mayetes3.ab . . . . . . 7 𝐴 ⊆ (⊥‘𝐵)
811, 2chub1i 29732 . . . . . . . . . . 11 𝐴 ⊆ (𝐴 𝐶)
823, 4chub1i 29732 . . . . . . . . . . . 12 (𝐴 𝐶) ⊆ ((𝐴 𝐶) ∨ 𝐹)
8382, 44sseqtrri 3954 . . . . . . . . . . 11 (𝐴 𝐶) ⊆ 𝑋
8481, 83sstri 3926 . . . . . . . . . 10 𝐴𝑋
851, 45chsscon3i 29724 . . . . . . . . . 10 (𝐴𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐴))
8684, 85mpbi 229 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐴)
8747, 86sstri 3926 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐴)
886, 1chsscon2i 29726 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝑅))
8987, 88mpbi 229 . . . . . . 7 𝐴 ⊆ (⊥‘𝑅)
9080, 89ssini 4162 . . . . . 6 𝐴 ⊆ ((⊥‘𝐵) ∩ (⊥‘𝑅))
919, 6chdmj1i 29744 . . . . . 6 (⊥‘(𝐵 𝑅)) = ((⊥‘𝐵) ∩ (⊥‘𝑅))
9290, 91sseqtrri 3954 . . . . 5 𝐴 ⊆ (⊥‘(𝐵 𝑅))
93 mayetes3.cd . . . . . . 7 𝐶 ⊆ (⊥‘𝐷)
942, 1chub2i 29733 . . . . . . . . . . 11 𝐶 ⊆ (𝐴 𝐶)
9594, 83sstri 3926 . . . . . . . . . 10 𝐶𝑋
962, 45chsscon3i 29724 . . . . . . . . . 10 (𝐶𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐶))
9795, 96mpbi 229 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐶)
9847, 97sstri 3926 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐶)
996, 2chsscon2i 29726 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐶) ↔ 𝐶 ⊆ (⊥‘𝑅))
10098, 99mpbi 229 . . . . . . 7 𝐶 ⊆ (⊥‘𝑅)
10193, 100ssini 4162 . . . . . 6 𝐶 ⊆ ((⊥‘𝐷) ∩ (⊥‘𝑅))
10218, 6chdmj1i 29744 . . . . . 6 (⊥‘(𝐷 𝑅)) = ((⊥‘𝐷) ∩ (⊥‘𝑅))
103101, 102sseqtrri 3954 . . . . 5 𝐶 ⊆ (⊥‘(𝐷 𝑅))
104 mayetes3.fg . . . . . . 7 𝐹 ⊆ (⊥‘𝐺)
1054, 3chub2i 29733 . . . . . . . . . . 11 𝐹 ⊆ ((𝐴 𝐶) ∨ 𝐹)
106105, 44sseqtrri 3954 . . . . . . . . . 10 𝐹𝑋
1074, 45chsscon3i 29724 . . . . . . . . . 10 (𝐹𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐹))
108106, 107mpbi 229 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐹)
10947, 108sstri 3926 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐹)
1106, 4chsscon2i 29726 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐹) ↔ 𝐹 ⊆ (⊥‘𝑅))
111109, 110mpbi 229 . . . . . . 7 𝐹 ⊆ (⊥‘𝑅)
112104, 111ssini 4162 . . . . . 6 𝐹 ⊆ ((⊥‘𝐺) ∩ (⊥‘𝑅))
11329, 6chdmj1i 29744 . . . . . 6 (⊥‘(𝐺 𝑅)) = ((⊥‘𝐺) ∩ (⊥‘𝑅))
114112, 113sseqtrri 3954 . . . . 5 𝐹 ⊆ (⊥‘(𝐺 𝑅))
115 eqid 2738 . . . . 5 ((𝐴 𝐶) ∨ 𝐹) = ((𝐴 𝐶) ∨ 𝐹)
116 eqid 2738 . . . . 5 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))) = (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))
11774, 29, 6chjjdiri 29787 . . . . . 6 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) = (((𝐵 𝐷) ∨ 𝑅) ∨ (𝐺 𝑅))
1189, 18, 6chjjdiri 29787 . . . . . . 7 ((𝐵 𝐷) ∨ 𝑅) = ((𝐵 𝑅) ∨ (𝐷 𝑅))
119118oveq1i 7265 . . . . . 6 (((𝐵 𝐷) ∨ 𝑅) ∨ (𝐺 𝑅)) = (((𝐵 𝑅) ∨ (𝐷 𝑅)) ∨ (𝐺 𝑅))
120117, 119eqtri 2766 . . . . 5 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) = (((𝐵 𝑅) ∨ (𝐷 𝑅)) ∨ (𝐺 𝑅))
1211, 14, 2, 23, 4, 34, 77, 78, 79, 92, 103, 114, 115, 116, 120mayete3i 29991 . . . 4 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
1225, 43chincli 29723 . . . . 5 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ∈ C
12375, 6chjcli 29720 . . . . 5 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) ∈ C
1246, 122, 123chlubii 29735 . . . 4 ((𝑅 ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) ∧ (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)) → (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅))
12576, 121, 124mp2an 688 . . 3 (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
12673, 125sstri 3926 . 2 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
12744oveq1i 7265 . . 3 (𝑋 𝑅) = (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅)
128 mayetes3.y . . 3 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
129127, 128ineq12i 4141 . 2 ((𝑋 𝑅) ∩ 𝑌) = ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)))
130 mayetes3.z . . 3 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
131130oveq1i 7265 . 2 (𝑍 𝑅) = (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
132126, 129, 1313sstr4i 3960 1 ((𝑋 𝑅) ∩ 𝑌) ⊆ (𝑍 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  cin 3882  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255   C cch 29192  cort 29193   chj 29196   𝐶 ccm 29199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348  ax-hcompl 29465
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-lm 22288  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cfil 24324  df-cau 24325  df-cmet 24326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ssp 28985  df-ph 29076  df-cbn 29126  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-hlim 29235  df-hcau 29236  df-sh 29470  df-ch 29484  df-oc 29515  df-ch0 29516  df-shs 29571  df-chj 29573  df-pjh 29658  df-cm 29846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator