HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayetes3i Structured version   Visualization version   GIF version

Theorem mayetes3i 31708
Description: Mayet's equation E^*3, derived from E3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of [Mayet3] p. 1240. (Contributed by NM, 10-May-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayetes3.a 𝐴C
mayetes3.b 𝐵C
mayetes3.c 𝐶C
mayetes3.d 𝐷C
mayetes3.f 𝐹C
mayetes3.g 𝐺C
mayetes3.r 𝑅C
mayetes3.ac 𝐴 ⊆ (⊥‘𝐶)
mayetes3.af 𝐴 ⊆ (⊥‘𝐹)
mayetes3.cf 𝐶 ⊆ (⊥‘𝐹)
mayetes3.ab 𝐴 ⊆ (⊥‘𝐵)
mayetes3.cd 𝐶 ⊆ (⊥‘𝐷)
mayetes3.fg 𝐹 ⊆ (⊥‘𝐺)
mayetes3.rx 𝑅 ⊆ (⊥‘𝑋)
mayetes3.x 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
mayetes3.y 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
mayetes3.z 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
Assertion
Ref Expression
mayetes3i ((𝑋 𝑅) ∩ 𝑌) ⊆ (𝑍 𝑅)

Proof of Theorem mayetes3i
StepHypRef Expression
1 mayetes3.a . . . . . . . . 9 𝐴C
2 mayetes3.c . . . . . . . . 9 𝐶C
31, 2chjcli 31436 . . . . . . . 8 (𝐴 𝐶) ∈ C
4 mayetes3.f . . . . . . . 8 𝐹C
53, 4chjcli 31436 . . . . . . 7 ((𝐴 𝐶) ∨ 𝐹) ∈ C
6 mayetes3.r . . . . . . 7 𝑅C
75, 6chjcomi 31447 . . . . . 6 (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) = (𝑅 ((𝐴 𝐶) ∨ 𝐹))
87eqimssi 4004 . . . . 5 (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ⊆ (𝑅 ((𝐴 𝐶) ∨ 𝐹))
9 mayetes3.b . . . . . . . . . . 11 𝐵C
101, 9chjcli 31436 . . . . . . . . . 10 (𝐴 𝐵) ∈ C
1110, 6chub1i 31448 . . . . . . . . 9 (𝐴 𝐵) ⊆ ((𝐴 𝐵) ∨ 𝑅)
121, 9, 6chjassi 31465 . . . . . . . . 9 ((𝐴 𝐵) ∨ 𝑅) = (𝐴 (𝐵 𝑅))
1311, 12sseqtri 3992 . . . . . . . 8 (𝐴 𝐵) ⊆ (𝐴 (𝐵 𝑅))
149, 6chjcli 31436 . . . . . . . . . 10 (𝐵 𝑅) ∈ C
151, 14chjcli 31436 . . . . . . . . 9 (𝐴 (𝐵 𝑅)) ∈ C
1615, 6chub2i 31449 . . . . . . . 8 (𝐴 (𝐵 𝑅)) ⊆ (𝑅 (𝐴 (𝐵 𝑅)))
1713, 16sstri 3953 . . . . . . 7 (𝐴 𝐵) ⊆ (𝑅 (𝐴 (𝐵 𝑅)))
18 mayetes3.d . . . . . . . . . . 11 𝐷C
192, 18chjcli 31436 . . . . . . . . . 10 (𝐶 𝐷) ∈ C
2019, 6chub1i 31448 . . . . . . . . 9 (𝐶 𝐷) ⊆ ((𝐶 𝐷) ∨ 𝑅)
212, 18, 6chjassi 31465 . . . . . . . . 9 ((𝐶 𝐷) ∨ 𝑅) = (𝐶 (𝐷 𝑅))
2220, 21sseqtri 3992 . . . . . . . 8 (𝐶 𝐷) ⊆ (𝐶 (𝐷 𝑅))
2318, 6chjcli 31436 . . . . . . . . . 10 (𝐷 𝑅) ∈ C
242, 23chjcli 31436 . . . . . . . . 9 (𝐶 (𝐷 𝑅)) ∈ C
2524, 6chub2i 31449 . . . . . . . 8 (𝐶 (𝐷 𝑅)) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))
2622, 25sstri 3953 . . . . . . 7 (𝐶 𝐷) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))
27 ss2in 4204 . . . . . . 7 (((𝐴 𝐵) ⊆ (𝑅 (𝐴 (𝐵 𝑅))) ∧ (𝐶 𝐷) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))) → ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))))
2817, 26, 27mp2an 692 . . . . . 6 ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅))))
29 mayetes3.g . . . . . . . . . 10 𝐺C
304, 29chjcli 31436 . . . . . . . . 9 (𝐹 𝐺) ∈ C
3130, 6chub1i 31448 . . . . . . . 8 (𝐹 𝐺) ⊆ ((𝐹 𝐺) ∨ 𝑅)
324, 29, 6chjassi 31465 . . . . . . . 8 ((𝐹 𝐺) ∨ 𝑅) = (𝐹 (𝐺 𝑅))
3331, 32sseqtri 3992 . . . . . . 7 (𝐹 𝐺) ⊆ (𝐹 (𝐺 𝑅))
3429, 6chjcli 31436 . . . . . . . . 9 (𝐺 𝑅) ∈ C
354, 34chjcli 31436 . . . . . . . 8 (𝐹 (𝐺 𝑅)) ∈ C
3635, 6chub2i 31449 . . . . . . 7 (𝐹 (𝐺 𝑅)) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))
3733, 36sstri 3953 . . . . . 6 (𝐹 𝐺) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))
38 ss2in 4204 . . . . . 6 ((((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∧ (𝐹 𝐺) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))) → (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
3928, 37, 38mp2an 692 . . . . 5 (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
40 ss2in 4204 . . . . 5 (((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ⊆ (𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∧ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))) → ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))))
418, 39, 40mp2an 692 . . . 4 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
4215, 24chincli 31439 . . . . . . 7 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∈ C
4342, 35chincli 31439 . . . . . 6 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))) ∈ C
44 mayetes3.x . . . . . . . . . . 11 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
4544, 5eqeltri 2824 . . . . . . . . . 10 𝑋C
4645choccli 31286 . . . . . . . . 9 (⊥‘𝑋) ∈ C
47 mayetes3.rx . . . . . . . . 9 𝑅 ⊆ (⊥‘𝑋)
486, 46, 47lecmii 31582 . . . . . . . 8 𝑅 𝐶 (⊥‘𝑋)
496, 45cmcm2i 31572 . . . . . . . 8 (𝑅 𝐶 𝑋𝑅 𝐶 (⊥‘𝑋))
5048, 49mpbir 231 . . . . . . 7 𝑅 𝐶 𝑋
5150, 44breqtri 5127 . . . . . 6 𝑅 𝐶 ((𝐴 𝐶) ∨ 𝐹)
526, 9chub2i 31449 . . . . . . . . . 10 𝑅 ⊆ (𝐵 𝑅)
5314, 1chub2i 31449 . . . . . . . . . 10 (𝐵 𝑅) ⊆ (𝐴 (𝐵 𝑅))
5452, 53sstri 3953 . . . . . . . . 9 𝑅 ⊆ (𝐴 (𝐵 𝑅))
556, 15, 54lecmii 31582 . . . . . . . 8 𝑅 𝐶 (𝐴 (𝐵 𝑅))
566, 18chub2i 31449 . . . . . . . . . 10 𝑅 ⊆ (𝐷 𝑅)
5723, 2chub2i 31449 . . . . . . . . . 10 (𝐷 𝑅) ⊆ (𝐶 (𝐷 𝑅))
5856, 57sstri 3953 . . . . . . . . 9 𝑅 ⊆ (𝐶 (𝐷 𝑅))
596, 24, 58lecmii 31582 . . . . . . . 8 𝑅 𝐶 (𝐶 (𝐷 𝑅))
606, 15, 24, 55, 59cm2mi 31605 . . . . . . 7 𝑅 𝐶 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))
616, 29chub2i 31449 . . . . . . . . 9 𝑅 ⊆ (𝐺 𝑅)
6234, 4chub2i 31449 . . . . . . . . 9 (𝐺 𝑅) ⊆ (𝐹 (𝐺 𝑅))
6361, 62sstri 3953 . . . . . . . 8 𝑅 ⊆ (𝐹 (𝐺 𝑅))
646, 35, 63lecmii 31582 . . . . . . 7 𝑅 𝐶 (𝐹 (𝐺 𝑅))
656, 42, 35, 60, 64cm2mi 31605 . . . . . 6 𝑅 𝐶 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))
666, 5, 43, 51, 65fh3i 31602 . . . . 5 (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) = ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
676, 42, 35, 60, 64fh3i 31602 . . . . . . 7 (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) = ((𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
686, 15, 24, 55, 59fh3i 31602 . . . . . . . 8 (𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) = ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅))))
6968ineq1i 4175 . . . . . . 7 ((𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))) = (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
7067, 69eqtri 2752 . . . . . 6 (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) = (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
7170ineq2i 4176 . . . . 5 ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) = ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
7266, 71eqtr2i 2753 . . . 4 ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))) = (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
7341, 72sseqtri 3992 . . 3 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
749, 18chjcli 31436 . . . . . 6 (𝐵 𝐷) ∈ C
7574, 29chjcli 31436 . . . . 5 ((𝐵 𝐷) ∨ 𝐺) ∈ C
766, 75chub2i 31449 . . . 4 𝑅 ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
77 mayetes3.ac . . . . 5 𝐴 ⊆ (⊥‘𝐶)
78 mayetes3.af . . . . 5 𝐴 ⊆ (⊥‘𝐹)
79 mayetes3.cf . . . . 5 𝐶 ⊆ (⊥‘𝐹)
80 mayetes3.ab . . . . . . 7 𝐴 ⊆ (⊥‘𝐵)
811, 2chub1i 31448 . . . . . . . . . . 11 𝐴 ⊆ (𝐴 𝐶)
823, 4chub1i 31448 . . . . . . . . . . . 12 (𝐴 𝐶) ⊆ ((𝐴 𝐶) ∨ 𝐹)
8382, 44sseqtrri 3993 . . . . . . . . . . 11 (𝐴 𝐶) ⊆ 𝑋
8481, 83sstri 3953 . . . . . . . . . 10 𝐴𝑋
851, 45chsscon3i 31440 . . . . . . . . . 10 (𝐴𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐴))
8684, 85mpbi 230 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐴)
8747, 86sstri 3953 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐴)
886, 1chsscon2i 31442 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝑅))
8987, 88mpbi 230 . . . . . . 7 𝐴 ⊆ (⊥‘𝑅)
9080, 89ssini 4199 . . . . . 6 𝐴 ⊆ ((⊥‘𝐵) ∩ (⊥‘𝑅))
919, 6chdmj1i 31460 . . . . . 6 (⊥‘(𝐵 𝑅)) = ((⊥‘𝐵) ∩ (⊥‘𝑅))
9290, 91sseqtrri 3993 . . . . 5 𝐴 ⊆ (⊥‘(𝐵 𝑅))
93 mayetes3.cd . . . . . . 7 𝐶 ⊆ (⊥‘𝐷)
942, 1chub2i 31449 . . . . . . . . . . 11 𝐶 ⊆ (𝐴 𝐶)
9594, 83sstri 3953 . . . . . . . . . 10 𝐶𝑋
962, 45chsscon3i 31440 . . . . . . . . . 10 (𝐶𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐶))
9795, 96mpbi 230 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐶)
9847, 97sstri 3953 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐶)
996, 2chsscon2i 31442 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐶) ↔ 𝐶 ⊆ (⊥‘𝑅))
10098, 99mpbi 230 . . . . . . 7 𝐶 ⊆ (⊥‘𝑅)
10193, 100ssini 4199 . . . . . 6 𝐶 ⊆ ((⊥‘𝐷) ∩ (⊥‘𝑅))
10218, 6chdmj1i 31460 . . . . . 6 (⊥‘(𝐷 𝑅)) = ((⊥‘𝐷) ∩ (⊥‘𝑅))
103101, 102sseqtrri 3993 . . . . 5 𝐶 ⊆ (⊥‘(𝐷 𝑅))
104 mayetes3.fg . . . . . . 7 𝐹 ⊆ (⊥‘𝐺)
1054, 3chub2i 31449 . . . . . . . . . . 11 𝐹 ⊆ ((𝐴 𝐶) ∨ 𝐹)
106105, 44sseqtrri 3993 . . . . . . . . . 10 𝐹𝑋
1074, 45chsscon3i 31440 . . . . . . . . . 10 (𝐹𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐹))
108106, 107mpbi 230 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐹)
10947, 108sstri 3953 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐹)
1106, 4chsscon2i 31442 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐹) ↔ 𝐹 ⊆ (⊥‘𝑅))
111109, 110mpbi 230 . . . . . . 7 𝐹 ⊆ (⊥‘𝑅)
112104, 111ssini 4199 . . . . . 6 𝐹 ⊆ ((⊥‘𝐺) ∩ (⊥‘𝑅))
11329, 6chdmj1i 31460 . . . . . 6 (⊥‘(𝐺 𝑅)) = ((⊥‘𝐺) ∩ (⊥‘𝑅))
114112, 113sseqtrri 3993 . . . . 5 𝐹 ⊆ (⊥‘(𝐺 𝑅))
115 eqid 2729 . . . . 5 ((𝐴 𝐶) ∨ 𝐹) = ((𝐴 𝐶) ∨ 𝐹)
116 eqid 2729 . . . . 5 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))) = (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))
11774, 29, 6chjjdiri 31503 . . . . . 6 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) = (((𝐵 𝐷) ∨ 𝑅) ∨ (𝐺 𝑅))
1189, 18, 6chjjdiri 31503 . . . . . . 7 ((𝐵 𝐷) ∨ 𝑅) = ((𝐵 𝑅) ∨ (𝐷 𝑅))
119118oveq1i 7379 . . . . . 6 (((𝐵 𝐷) ∨ 𝑅) ∨ (𝐺 𝑅)) = (((𝐵 𝑅) ∨ (𝐷 𝑅)) ∨ (𝐺 𝑅))
120117, 119eqtri 2752 . . . . 5 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) = (((𝐵 𝑅) ∨ (𝐷 𝑅)) ∨ (𝐺 𝑅))
1211, 14, 2, 23, 4, 34, 77, 78, 79, 92, 103, 114, 115, 116, 120mayete3i 31707 . . . 4 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
1225, 43chincli 31439 . . . . 5 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ∈ C
12375, 6chjcli 31436 . . . . 5 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) ∈ C
1246, 122, 123chlubii 31451 . . . 4 ((𝑅 ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) ∧ (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)) → (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅))
12576, 121, 124mp2an 692 . . 3 (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
12673, 125sstri 3953 . 2 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
12744oveq1i 7379 . . 3 (𝑋 𝑅) = (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅)
128 mayetes3.y . . 3 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
129127, 128ineq12i 4177 . 2 ((𝑋 𝑅) ∩ 𝑌) = ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)))
130 mayetes3.z . . 3 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
131130oveq1i 7379 . 2 (𝑍 𝑅) = (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
132126, 129, 1313sstr4i 3995 1 ((𝑋 𝑅) ∩ 𝑌) ⊆ (𝑍 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cin 3910  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369   C cch 30908  cort 30909   chj 30912   𝐶 ccm 30915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cc 10364  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-hilex 30978  ax-hfvadd 30979  ax-hvcom 30980  ax-hvass 30981  ax-hv0cl 30982  ax-hvaddid 30983  ax-hfvmul 30984  ax-hvmulid 30985  ax-hvmulass 30986  ax-hvdistr1 30987  ax-hvdistr2 30988  ax-hvmul0 30989  ax-hfi 31058  ax-his1 31061  ax-his2 31062  ax-his3 31063  ax-his4 31064  ax-hcompl 31181
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-cn 23147  df-cnp 23148  df-lm 23149  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cfil 25188  df-cau 25189  df-cmet 25190  df-grpo 30472  df-gid 30473  df-ginv 30474  df-gdiv 30475  df-ablo 30524  df-vc 30538  df-nv 30571  df-va 30574  df-ba 30575  df-sm 30576  df-0v 30577  df-vs 30578  df-nmcv 30579  df-ims 30580  df-dip 30680  df-ssp 30701  df-ph 30792  df-cbn 30842  df-hnorm 30947  df-hba 30948  df-hvsub 30950  df-hlim 30951  df-hcau 30952  df-sh 31186  df-ch 31200  df-oc 31231  df-ch0 31232  df-shs 31287  df-chj 31289  df-pjh 31374  df-cm 31562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator