HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayetes3i Structured version   Visualization version   GIF version

Theorem mayetes3i 31757
Description: Mayet's equation E^*3, derived from E3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of [Mayet3] p. 1240. (Contributed by NM, 10-May-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayetes3.a 𝐴C
mayetes3.b 𝐵C
mayetes3.c 𝐶C
mayetes3.d 𝐷C
mayetes3.f 𝐹C
mayetes3.g 𝐺C
mayetes3.r 𝑅C
mayetes3.ac 𝐴 ⊆ (⊥‘𝐶)
mayetes3.af 𝐴 ⊆ (⊥‘𝐹)
mayetes3.cf 𝐶 ⊆ (⊥‘𝐹)
mayetes3.ab 𝐴 ⊆ (⊥‘𝐵)
mayetes3.cd 𝐶 ⊆ (⊥‘𝐷)
mayetes3.fg 𝐹 ⊆ (⊥‘𝐺)
mayetes3.rx 𝑅 ⊆ (⊥‘𝑋)
mayetes3.x 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
mayetes3.y 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
mayetes3.z 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
Assertion
Ref Expression
mayetes3i ((𝑋 𝑅) ∩ 𝑌) ⊆ (𝑍 𝑅)

Proof of Theorem mayetes3i
StepHypRef Expression
1 mayetes3.a . . . . . . . . 9 𝐴C
2 mayetes3.c . . . . . . . . 9 𝐶C
31, 2chjcli 31485 . . . . . . . 8 (𝐴 𝐶) ∈ C
4 mayetes3.f . . . . . . . 8 𝐹C
53, 4chjcli 31485 . . . . . . 7 ((𝐴 𝐶) ∨ 𝐹) ∈ C
6 mayetes3.r . . . . . . 7 𝑅C
75, 6chjcomi 31496 . . . . . 6 (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) = (𝑅 ((𝐴 𝐶) ∨ 𝐹))
87eqimssi 4055 . . . . 5 (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ⊆ (𝑅 ((𝐴 𝐶) ∨ 𝐹))
9 mayetes3.b . . . . . . . . . . 11 𝐵C
101, 9chjcli 31485 . . . . . . . . . 10 (𝐴 𝐵) ∈ C
1110, 6chub1i 31497 . . . . . . . . 9 (𝐴 𝐵) ⊆ ((𝐴 𝐵) ∨ 𝑅)
121, 9, 6chjassi 31514 . . . . . . . . 9 ((𝐴 𝐵) ∨ 𝑅) = (𝐴 (𝐵 𝑅))
1311, 12sseqtri 4031 . . . . . . . 8 (𝐴 𝐵) ⊆ (𝐴 (𝐵 𝑅))
149, 6chjcli 31485 . . . . . . . . . 10 (𝐵 𝑅) ∈ C
151, 14chjcli 31485 . . . . . . . . 9 (𝐴 (𝐵 𝑅)) ∈ C
1615, 6chub2i 31498 . . . . . . . 8 (𝐴 (𝐵 𝑅)) ⊆ (𝑅 (𝐴 (𝐵 𝑅)))
1713, 16sstri 4004 . . . . . . 7 (𝐴 𝐵) ⊆ (𝑅 (𝐴 (𝐵 𝑅)))
18 mayetes3.d . . . . . . . . . . 11 𝐷C
192, 18chjcli 31485 . . . . . . . . . 10 (𝐶 𝐷) ∈ C
2019, 6chub1i 31497 . . . . . . . . 9 (𝐶 𝐷) ⊆ ((𝐶 𝐷) ∨ 𝑅)
212, 18, 6chjassi 31514 . . . . . . . . 9 ((𝐶 𝐷) ∨ 𝑅) = (𝐶 (𝐷 𝑅))
2220, 21sseqtri 4031 . . . . . . . 8 (𝐶 𝐷) ⊆ (𝐶 (𝐷 𝑅))
2318, 6chjcli 31485 . . . . . . . . . 10 (𝐷 𝑅) ∈ C
242, 23chjcli 31485 . . . . . . . . 9 (𝐶 (𝐷 𝑅)) ∈ C
2524, 6chub2i 31498 . . . . . . . 8 (𝐶 (𝐷 𝑅)) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))
2622, 25sstri 4004 . . . . . . 7 (𝐶 𝐷) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))
27 ss2in 4252 . . . . . . 7 (((𝐴 𝐵) ⊆ (𝑅 (𝐴 (𝐵 𝑅))) ∧ (𝐶 𝐷) ⊆ (𝑅 (𝐶 (𝐷 𝑅)))) → ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))))
2817, 26, 27mp2an 692 . . . . . 6 ((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅))))
29 mayetes3.g . . . . . . . . . 10 𝐺C
304, 29chjcli 31485 . . . . . . . . 9 (𝐹 𝐺) ∈ C
3130, 6chub1i 31497 . . . . . . . 8 (𝐹 𝐺) ⊆ ((𝐹 𝐺) ∨ 𝑅)
324, 29, 6chjassi 31514 . . . . . . . 8 ((𝐹 𝐺) ∨ 𝑅) = (𝐹 (𝐺 𝑅))
3331, 32sseqtri 4031 . . . . . . 7 (𝐹 𝐺) ⊆ (𝐹 (𝐺 𝑅))
3429, 6chjcli 31485 . . . . . . . . 9 (𝐺 𝑅) ∈ C
354, 34chjcli 31485 . . . . . . . 8 (𝐹 (𝐺 𝑅)) ∈ C
3635, 6chub2i 31498 . . . . . . 7 (𝐹 (𝐺 𝑅)) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))
3733, 36sstri 4004 . . . . . 6 (𝐹 𝐺) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))
38 ss2in 4252 . . . . . 6 ((((𝐴 𝐵) ∩ (𝐶 𝐷)) ⊆ ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∧ (𝐹 𝐺) ⊆ (𝑅 (𝐹 (𝐺 𝑅)))) → (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
3928, 37, 38mp2an 692 . . . . 5 (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
40 ss2in 4252 . . . . 5 (((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ⊆ (𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∧ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)) ⊆ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))) → ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))))
418, 39, 40mp2an 692 . . . 4 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
4215, 24chincli 31488 . . . . . . 7 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∈ C
4342, 35chincli 31488 . . . . . 6 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))) ∈ C
44 mayetes3.x . . . . . . . . . . 11 𝑋 = ((𝐴 𝐶) ∨ 𝐹)
4544, 5eqeltri 2834 . . . . . . . . . 10 𝑋C
4645choccli 31335 . . . . . . . . 9 (⊥‘𝑋) ∈ C
47 mayetes3.rx . . . . . . . . 9 𝑅 ⊆ (⊥‘𝑋)
486, 46, 47lecmii 31631 . . . . . . . 8 𝑅 𝐶 (⊥‘𝑋)
496, 45cmcm2i 31621 . . . . . . . 8 (𝑅 𝐶 𝑋𝑅 𝐶 (⊥‘𝑋))
5048, 49mpbir 231 . . . . . . 7 𝑅 𝐶 𝑋
5150, 44breqtri 5172 . . . . . 6 𝑅 𝐶 ((𝐴 𝐶) ∨ 𝐹)
526, 9chub2i 31498 . . . . . . . . . 10 𝑅 ⊆ (𝐵 𝑅)
5314, 1chub2i 31498 . . . . . . . . . 10 (𝐵 𝑅) ⊆ (𝐴 (𝐵 𝑅))
5452, 53sstri 4004 . . . . . . . . 9 𝑅 ⊆ (𝐴 (𝐵 𝑅))
556, 15, 54lecmii 31631 . . . . . . . 8 𝑅 𝐶 (𝐴 (𝐵 𝑅))
566, 18chub2i 31498 . . . . . . . . . 10 𝑅 ⊆ (𝐷 𝑅)
5723, 2chub2i 31498 . . . . . . . . . 10 (𝐷 𝑅) ⊆ (𝐶 (𝐷 𝑅))
5856, 57sstri 4004 . . . . . . . . 9 𝑅 ⊆ (𝐶 (𝐷 𝑅))
596, 24, 58lecmii 31631 . . . . . . . 8 𝑅 𝐶 (𝐶 (𝐷 𝑅))
606, 15, 24, 55, 59cm2mi 31654 . . . . . . 7 𝑅 𝐶 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))
616, 29chub2i 31498 . . . . . . . . 9 𝑅 ⊆ (𝐺 𝑅)
6234, 4chub2i 31498 . . . . . . . . 9 (𝐺 𝑅) ⊆ (𝐹 (𝐺 𝑅))
6361, 62sstri 4004 . . . . . . . 8 𝑅 ⊆ (𝐹 (𝐺 𝑅))
646, 35, 63lecmii 31631 . . . . . . 7 𝑅 𝐶 (𝐹 (𝐺 𝑅))
656, 42, 35, 60, 64cm2mi 31654 . . . . . 6 𝑅 𝐶 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))
666, 5, 43, 51, 65fh3i 31651 . . . . 5 (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) = ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
676, 42, 35, 60, 64fh3i 31651 . . . . . . 7 (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) = ((𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
686, 15, 24, 55, 59fh3i 31651 . . . . . . . 8 (𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) = ((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅))))
6968ineq1i 4223 . . . . . . 7 ((𝑅 ((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))) = (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
7067, 69eqtri 2762 . . . . . 6 (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) = (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))
7170ineq2i 4224 . . . . 5 ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (𝑅 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) = ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅)))))
7266, 71eqtr2i 2763 . . . 4 ((𝑅 ((𝐴 𝐶) ∨ 𝐹)) ∩ (((𝑅 (𝐴 (𝐵 𝑅))) ∩ (𝑅 (𝐶 (𝐷 𝑅)))) ∩ (𝑅 (𝐹 (𝐺 𝑅))))) = (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
7341, 72sseqtri 4031 . . 3 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))))
749, 18chjcli 31485 . . . . . 6 (𝐵 𝐷) ∈ C
7574, 29chjcli 31485 . . . . 5 ((𝐵 𝐷) ∨ 𝐺) ∈ C
766, 75chub2i 31498 . . . 4 𝑅 ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
77 mayetes3.ac . . . . 5 𝐴 ⊆ (⊥‘𝐶)
78 mayetes3.af . . . . 5 𝐴 ⊆ (⊥‘𝐹)
79 mayetes3.cf . . . . 5 𝐶 ⊆ (⊥‘𝐹)
80 mayetes3.ab . . . . . . 7 𝐴 ⊆ (⊥‘𝐵)
811, 2chub1i 31497 . . . . . . . . . . 11 𝐴 ⊆ (𝐴 𝐶)
823, 4chub1i 31497 . . . . . . . . . . . 12 (𝐴 𝐶) ⊆ ((𝐴 𝐶) ∨ 𝐹)
8382, 44sseqtrri 4032 . . . . . . . . . . 11 (𝐴 𝐶) ⊆ 𝑋
8481, 83sstri 4004 . . . . . . . . . 10 𝐴𝑋
851, 45chsscon3i 31489 . . . . . . . . . 10 (𝐴𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐴))
8684, 85mpbi 230 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐴)
8747, 86sstri 4004 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐴)
886, 1chsscon2i 31491 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐴) ↔ 𝐴 ⊆ (⊥‘𝑅))
8987, 88mpbi 230 . . . . . . 7 𝐴 ⊆ (⊥‘𝑅)
9080, 89ssini 4247 . . . . . 6 𝐴 ⊆ ((⊥‘𝐵) ∩ (⊥‘𝑅))
919, 6chdmj1i 31509 . . . . . 6 (⊥‘(𝐵 𝑅)) = ((⊥‘𝐵) ∩ (⊥‘𝑅))
9290, 91sseqtrri 4032 . . . . 5 𝐴 ⊆ (⊥‘(𝐵 𝑅))
93 mayetes3.cd . . . . . . 7 𝐶 ⊆ (⊥‘𝐷)
942, 1chub2i 31498 . . . . . . . . . . 11 𝐶 ⊆ (𝐴 𝐶)
9594, 83sstri 4004 . . . . . . . . . 10 𝐶𝑋
962, 45chsscon3i 31489 . . . . . . . . . 10 (𝐶𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐶))
9795, 96mpbi 230 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐶)
9847, 97sstri 4004 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐶)
996, 2chsscon2i 31491 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐶) ↔ 𝐶 ⊆ (⊥‘𝑅))
10098, 99mpbi 230 . . . . . . 7 𝐶 ⊆ (⊥‘𝑅)
10193, 100ssini 4247 . . . . . 6 𝐶 ⊆ ((⊥‘𝐷) ∩ (⊥‘𝑅))
10218, 6chdmj1i 31509 . . . . . 6 (⊥‘(𝐷 𝑅)) = ((⊥‘𝐷) ∩ (⊥‘𝑅))
103101, 102sseqtrri 4032 . . . . 5 𝐶 ⊆ (⊥‘(𝐷 𝑅))
104 mayetes3.fg . . . . . . 7 𝐹 ⊆ (⊥‘𝐺)
1054, 3chub2i 31498 . . . . . . . . . . 11 𝐹 ⊆ ((𝐴 𝐶) ∨ 𝐹)
106105, 44sseqtrri 4032 . . . . . . . . . 10 𝐹𝑋
1074, 45chsscon3i 31489 . . . . . . . . . 10 (𝐹𝑋 ↔ (⊥‘𝑋) ⊆ (⊥‘𝐹))
108106, 107mpbi 230 . . . . . . . . 9 (⊥‘𝑋) ⊆ (⊥‘𝐹)
10947, 108sstri 4004 . . . . . . . 8 𝑅 ⊆ (⊥‘𝐹)
1106, 4chsscon2i 31491 . . . . . . . 8 (𝑅 ⊆ (⊥‘𝐹) ↔ 𝐹 ⊆ (⊥‘𝑅))
111109, 110mpbi 230 . . . . . . 7 𝐹 ⊆ (⊥‘𝑅)
112104, 111ssini 4247 . . . . . 6 𝐹 ⊆ ((⊥‘𝐺) ∩ (⊥‘𝑅))
11329, 6chdmj1i 31509 . . . . . 6 (⊥‘(𝐺 𝑅)) = ((⊥‘𝐺) ∩ (⊥‘𝑅))
114112, 113sseqtrri 4032 . . . . 5 𝐹 ⊆ (⊥‘(𝐺 𝑅))
115 eqid 2734 . . . . 5 ((𝐴 𝐶) ∨ 𝐹) = ((𝐴 𝐶) ∨ 𝐹)
116 eqid 2734 . . . . 5 (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))) = (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))
11774, 29, 6chjjdiri 31552 . . . . . 6 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) = (((𝐵 𝐷) ∨ 𝑅) ∨ (𝐺 𝑅))
1189, 18, 6chjjdiri 31552 . . . . . . 7 ((𝐵 𝐷) ∨ 𝑅) = ((𝐵 𝑅) ∨ (𝐷 𝑅))
119118oveq1i 7440 . . . . . 6 (((𝐵 𝐷) ∨ 𝑅) ∨ (𝐺 𝑅)) = (((𝐵 𝑅) ∨ (𝐷 𝑅)) ∨ (𝐺 𝑅))
120117, 119eqtri 2762 . . . . 5 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) = (((𝐵 𝑅) ∨ (𝐷 𝑅)) ∨ (𝐺 𝑅))
1211, 14, 2, 23, 4, 34, 77, 78, 79, 92, 103, 114, 115, 116, 120mayete3i 31756 . . . 4 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
1225, 43chincli 31488 . . . . 5 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ∈ C
12375, 6chjcli 31485 . . . . 5 (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) ∈ C
1246, 122, 123chlubii 31500 . . . 4 ((𝑅 ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅) ∧ (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅)))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)) → (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅))
12576, 121, 124mp2an 692 . . 3 (𝑅 (((𝐴 𝐶) ∨ 𝐹) ∩ (((𝐴 (𝐵 𝑅)) ∩ (𝐶 (𝐷 𝑅))) ∩ (𝐹 (𝐺 𝑅))))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
12673, 125sstri 4004 . 2 ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))) ⊆ (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
12744oveq1i 7440 . . 3 (𝑋 𝑅) = (((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅)
128 mayetes3.y . . 3 𝑌 = (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺))
129127, 128ineq12i 4225 . 2 ((𝑋 𝑅) ∩ 𝑌) = ((((𝐴 𝐶) ∨ 𝐹) ∨ 𝑅) ∩ (((𝐴 𝐵) ∩ (𝐶 𝐷)) ∩ (𝐹 𝐺)))
130 mayetes3.z . . 3 𝑍 = ((𝐵 𝐷) ∨ 𝐺)
131130oveq1i 7440 . 2 (𝑍 𝑅) = (((𝐵 𝐷) ∨ 𝐺) ∨ 𝑅)
132126, 129, 1313sstr4i 4038 1 ((𝑋 𝑅) ∩ 𝑌) ⊆ (𝑍 𝑅)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2105  cin 3961  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430   C cch 30957  cort 30958   chj 30961   𝐶 ccm 30964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232  ax-hilex 31027  ax-hfvadd 31028  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr1 31036  ax-hvdistr2 31037  ax-hvmul0 31038  ax-hfi 31107  ax-his1 31110  ax-his2 31111  ax-his3 31112  ax-his4 31113  ax-hcompl 31230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-cn 23250  df-cnp 23251  df-lm 23252  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cfil 25302  df-cau 25303  df-cmet 25304  df-grpo 30521  df-gid 30522  df-ginv 30523  df-gdiv 30524  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-vs 30627  df-nmcv 30628  df-ims 30629  df-dip 30729  df-ssp 30750  df-ph 30841  df-cbn 30891  df-hnorm 30996  df-hba 30997  df-hvsub 30999  df-hlim 31000  df-hcau 31001  df-sh 31235  df-ch 31249  df-oc 31280  df-ch0 31281  df-shs 31336  df-chj 31338  df-pjh 31423  df-cm 31611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator