![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iedgval | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
iedgval | ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2821 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
2 | fveq2 6891 | . . . 4 ⊢ (𝑔 = 𝐺 → (2nd ‘𝑔) = (2nd ‘𝐺)) | |
3 | fveq2 6891 | . . . 4 ⊢ (𝑔 = 𝐺 → (.ef‘𝑔) = (.ef‘𝐺)) | |
4 | 1, 2, 3 | ifbieq12d 4556 | . . 3 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔)) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
5 | df-iedg 28514 | . . 3 ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) | |
6 | fvex 6904 | . . . 4 ⊢ (2nd ‘𝐺) ∈ V | |
7 | fvex 6904 | . . . 4 ⊢ (.ef‘𝐺) ∈ V | |
8 | 6, 7 | ifex 4578 | . . 3 ⊢ if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) ∈ V |
9 | 4, 5, 8 | fvmpt 6998 | . 2 ⊢ (𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
10 | fvprc 6883 | . . 3 ⊢ (¬ 𝐺 ∈ V → (.ef‘𝐺) = ∅) | |
11 | prcnel 3497 | . . . 4 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
12 | 11 | iffalsed 4539 | . . 3 ⊢ (¬ 𝐺 ∈ V → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
13 | fvprc 6883 | . . 3 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
14 | 10, 12, 13 | 3eqtr4rd 2783 | . 2 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
15 | 9, 14 | pm2.61i 182 | 1 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4322 ifcif 4528 × cxp 5674 ‘cfv 6543 2nd c2nd 7976 .efcedgf 28501 iEdgciedg 28512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-iedg 28514 |
This theorem is referenced by: opiedgval 28521 funiedgdmge2val 28527 funiedgdm2val 28529 snstriedgval 28553 iedgval0 28555 |
Copyright terms: Public domain | W3C validator |