Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iedgval | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
iedgval | ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
2 | fveq2 6756 | . . . 4 ⊢ (𝑔 = 𝐺 → (2nd ‘𝑔) = (2nd ‘𝐺)) | |
3 | fveq2 6756 | . . . 4 ⊢ (𝑔 = 𝐺 → (.ef‘𝑔) = (.ef‘𝐺)) | |
4 | 1, 2, 3 | ifbieq12d 4484 | . . 3 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔)) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
5 | df-iedg 27272 | . . 3 ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) | |
6 | fvex 6769 | . . . 4 ⊢ (2nd ‘𝐺) ∈ V | |
7 | fvex 6769 | . . . 4 ⊢ (.ef‘𝐺) ∈ V | |
8 | 6, 7 | ifex 4506 | . . 3 ⊢ if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) ∈ V |
9 | 4, 5, 8 | fvmpt 6857 | . 2 ⊢ (𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
10 | fvprc 6748 | . . 3 ⊢ (¬ 𝐺 ∈ V → (.ef‘𝐺) = ∅) | |
11 | prcnel 3445 | . . . 4 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
12 | 11 | iffalsed 4467 | . . 3 ⊢ (¬ 𝐺 ∈ V → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
13 | fvprc 6748 | . . 3 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
14 | 10, 12, 13 | 3eqtr4rd 2789 | . 2 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
15 | 9, 14 | pm2.61i 182 | 1 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ifcif 4456 × cxp 5578 ‘cfv 6418 2nd c2nd 7803 .efcedgf 27259 iEdgciedg 27270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-iedg 27272 |
This theorem is referenced by: opiedgval 27279 funiedgdmge2val 27285 funiedgdm2val 27287 snstriedgval 27311 iedgval0 27313 |
Copyright terms: Public domain | W3C validator |