MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgval Structured version   Visualization version   GIF version

Theorem iedgval 27371
Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
iedgval (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))

Proof of Theorem iedgval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . 4 (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V)))
2 fveq2 6774 . . . 4 (𝑔 = 𝐺 → (2nd𝑔) = (2nd𝐺))
3 fveq2 6774 . . . 4 (𝑔 = 𝐺 → (.ef‘𝑔) = (.ef‘𝐺))
41, 2, 3ifbieq12d 4487 . . 3 (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
5 df-iedg 27369 . . 3 iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
6 fvex 6787 . . . 4 (2nd𝐺) ∈ V
7 fvex 6787 . . . 4 (.ef‘𝐺) ∈ V
86, 7ifex 4509 . . 3 if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) ∈ V
94, 5, 8fvmpt 6875 . 2 (𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
10 fvprc 6766 . . 3 𝐺 ∈ V → (.ef‘𝐺) = ∅)
11 prcnel 3455 . . . 4 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
1211iffalsed 4470 . . 3 𝐺 ∈ V → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) = (.ef‘𝐺))
13 fvprc 6766 . . 3 𝐺 ∈ V → (iEdg‘𝐺) = ∅)
1410, 12, 133eqtr4rd 2789 . 2 𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
159, 14pm2.61i 182 1 (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  ifcif 4459   × cxp 5587  cfv 6433  2nd c2nd 7830  .efcedgf 27356  iEdgciedg 27367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-iedg 27369
This theorem is referenced by:  opiedgval  27376  funiedgdmge2val  27382  funiedgdm2val  27384  snstriedgval  27408  iedgval0  27410
  Copyright terms: Public domain W3C validator