MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgval Structured version   Visualization version   GIF version

Theorem iedgval 27092
Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
iedgval (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))

Proof of Theorem iedgval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2825 . . . 4 (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V)))
2 fveq2 6717 . . . 4 (𝑔 = 𝐺 → (2nd𝑔) = (2nd𝐺))
3 fveq2 6717 . . . 4 (𝑔 = 𝐺 → (.ef‘𝑔) = (.ef‘𝐺))
41, 2, 3ifbieq12d 4467 . . 3 (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
5 df-iedg 27090 . . 3 iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
6 fvex 6730 . . . 4 (2nd𝐺) ∈ V
7 fvex 6730 . . . 4 (.ef‘𝐺) ∈ V
86, 7ifex 4489 . . 3 if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) ∈ V
94, 5, 8fvmpt 6818 . 2 (𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
10 fvprc 6709 . . 3 𝐺 ∈ V → (.ef‘𝐺) = ∅)
11 prcnel 3431 . . . 4 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
1211iffalsed 4450 . . 3 𝐺 ∈ V → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) = (.ef‘𝐺))
13 fvprc 6709 . . 3 𝐺 ∈ V → (iEdg‘𝐺) = ∅)
1410, 12, 133eqtr4rd 2788 . 2 𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
159, 14pm2.61i 185 1 (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1543  wcel 2110  Vcvv 3408  c0 4237  ifcif 4439   × cxp 5549  cfv 6380  2nd c2nd 7760  .efcedgf 27079  iEdgciedg 27088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-iota 6338  df-fun 6382  df-fv 6388  df-iedg 27090
This theorem is referenced by:  opiedgval  27097  funiedgdmge2val  27103  funiedgdm2val  27105  snstriedgval  27129  iedgval0  27131
  Copyright terms: Public domain W3C validator