| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgval | Structured version Visualization version GIF version | ||
| Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| iedgval | ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
| 2 | fveq2 6886 | . . . 4 ⊢ (𝑔 = 𝐺 → (2nd ‘𝑔) = (2nd ‘𝐺)) | |
| 3 | fveq2 6886 | . . . 4 ⊢ (𝑔 = 𝐺 → (.ef‘𝑔) = (.ef‘𝐺)) | |
| 4 | 1, 2, 3 | ifbieq12d 4534 | . . 3 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔)) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 5 | df-iedg 28944 | . . 3 ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) | |
| 6 | fvex 6899 | . . . 4 ⊢ (2nd ‘𝐺) ∈ V | |
| 7 | fvex 6899 | . . . 4 ⊢ (.ef‘𝐺) ∈ V | |
| 8 | 6, 7 | ifex 4556 | . . 3 ⊢ if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) ∈ V |
| 9 | 4, 5, 8 | fvmpt 6996 | . 2 ⊢ (𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 10 | fvprc 6878 | . . 3 ⊢ (¬ 𝐺 ∈ V → (.ef‘𝐺) = ∅) | |
| 11 | prcnel 3490 | . . . 4 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
| 12 | 11 | iffalsed 4516 | . . 3 ⊢ (¬ 𝐺 ∈ V → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
| 13 | fvprc 6878 | . . 3 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
| 14 | 10, 12, 13 | 3eqtr4rd 2780 | . 2 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 15 | 9, 14 | pm2.61i 182 | 1 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 ifcif 4505 × cxp 5663 ‘cfv 6541 2nd c2nd 7995 .efcedgf 28933 iEdgciedg 28942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-iedg 28944 |
| This theorem is referenced by: opiedgval 28951 funiedgdmge2val 28957 funiedgdm2val 28959 snstriedgval 28983 iedgval0 28985 |
| Copyright terms: Public domain | W3C validator |