| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgval | Structured version Visualization version GIF version | ||
| Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| iedgval | ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2816 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
| 2 | fveq2 6826 | . . . 4 ⊢ (𝑔 = 𝐺 → (2nd ‘𝑔) = (2nd ‘𝐺)) | |
| 3 | fveq2 6826 | . . . 4 ⊢ (𝑔 = 𝐺 → (.ef‘𝑔) = (.ef‘𝐺)) | |
| 4 | 1, 2, 3 | ifbieq12d 4507 | . . 3 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔)) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 5 | df-iedg 28962 | . . 3 ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) | |
| 6 | fvex 6839 | . . . 4 ⊢ (2nd ‘𝐺) ∈ V | |
| 7 | fvex 6839 | . . . 4 ⊢ (.ef‘𝐺) ∈ V | |
| 8 | 6, 7 | ifex 4529 | . . 3 ⊢ if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) ∈ V |
| 9 | 4, 5, 8 | fvmpt 6934 | . 2 ⊢ (𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 10 | fvprc 6818 | . . 3 ⊢ (¬ 𝐺 ∈ V → (.ef‘𝐺) = ∅) | |
| 11 | prcnel 3464 | . . . 4 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
| 12 | 11 | iffalsed 4489 | . . 3 ⊢ (¬ 𝐺 ∈ V → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
| 13 | fvprc 6818 | . . 3 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
| 14 | 10, 12, 13 | 3eqtr4rd 2775 | . 2 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 15 | 9, 14 | pm2.61i 182 | 1 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 ifcif 4478 × cxp 5621 ‘cfv 6486 2nd c2nd 7930 .efcedgf 28951 iEdgciedg 28960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-iedg 28962 |
| This theorem is referenced by: opiedgval 28969 funiedgdmge2val 28975 funiedgdm2val 28977 snstriedgval 29001 iedgval0 29003 |
| Copyright terms: Public domain | W3C validator |