| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iedgval | Structured version Visualization version GIF version | ||
| Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.) |
| Ref | Expression |
|---|---|
| iedgval | ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2821 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V))) | |
| 2 | fveq2 6831 | . . . 4 ⊢ (𝑔 = 𝐺 → (2nd ‘𝑔) = (2nd ‘𝐺)) | |
| 3 | fveq2 6831 | . . . 4 ⊢ (𝑔 = 𝐺 → (.ef‘𝑔) = (.ef‘𝐺)) | |
| 4 | 1, 2, 3 | ifbieq12d 4505 | . . 3 ⊢ (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔)) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 5 | df-iedg 28998 | . . 3 ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd ‘𝑔), (.ef‘𝑔))) | |
| 6 | fvex 6844 | . . . 4 ⊢ (2nd ‘𝐺) ∈ V | |
| 7 | fvex 6844 | . . . 4 ⊢ (.ef‘𝐺) ∈ V | |
| 8 | 6, 7 | ifex 4527 | . . 3 ⊢ if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) ∈ V |
| 9 | 4, 5, 8 | fvmpt 6938 | . 2 ⊢ (𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 10 | fvprc 6823 | . . 3 ⊢ (¬ 𝐺 ∈ V → (.ef‘𝐺) = ∅) | |
| 11 | prcnel 3463 | . . . 4 ⊢ (¬ 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V)) | |
| 12 | 11 | iffalsed 4487 | . . 3 ⊢ (¬ 𝐺 ∈ V → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (.ef‘𝐺)) |
| 13 | fvprc 6823 | . . 3 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = ∅) | |
| 14 | 10, 12, 13 | 3eqtr4rd 2779 | . 2 ⊢ (¬ 𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) |
| 15 | 9, 14 | pm2.61i 182 | 1 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ifcif 4476 × cxp 5619 ‘cfv 6489 2nd c2nd 7929 .efcedgf 28987 iEdgciedg 28996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-iedg 28998 |
| This theorem is referenced by: opiedgval 29005 funiedgdmge2val 29011 funiedgdm2val 29013 snstriedgval 29037 iedgval0 29039 |
| Copyright terms: Public domain | W3C validator |