| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmgm | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| Ref | Expression |
|---|---|
| eldmgm | ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3936 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ))) | |
| 2 | eldif 3936 | . . . . 5 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ)) | |
| 3 | elznn 12604 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0))) | |
| 4 | 3 | simprbi 496 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0)) |
| 5 | 4 | orcanai 1004 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) → -𝐴 ∈ ℕ0) |
| 6 | negneg 11533 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 = 𝐴) |
| 8 | nn0negz 12630 | . . . . . . . . . 10 ⊢ (-𝐴 ∈ ℕ0 → --𝐴 ∈ ℤ) | |
| 9 | 8 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 ∈ ℤ) |
| 10 | 7, 9 | eqeltrrd 2835 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
| 11 | 10 | ex 412 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ)) |
| 12 | nngt0 12271 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 13 | nnre 12247 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 14 | 13 | lt0neg2d 11807 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → (0 < 𝐴 ↔ -𝐴 < 0)) |
| 15 | 12, 14 | mpbid 232 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → -𝐴 < 0) |
| 16 | 13 | renegcld 11664 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → -𝐴 ∈ ℝ) |
| 17 | 0re 11237 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 18 | ltnle 11314 | . . . . . . . . . 10 ⊢ ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) | |
| 19 | 16, 17, 18 | sylancl 586 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) |
| 20 | 15, 19 | mpbid 232 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ¬ 0 ≤ -𝐴) |
| 21 | nn0ge0 12526 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℕ0 → 0 ≤ -𝐴) | |
| 22 | 20, 21 | nsyl3 138 | . . . . . . 7 ⊢ (-𝐴 ∈ ℕ0 → ¬ 𝐴 ∈ ℕ) |
| 23 | 11, 22 | jca2 513 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ))) |
| 24 | 5, 23 | impbid2 226 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) ↔ -𝐴 ∈ ℕ0)) |
| 25 | 2, 24 | bitrid 283 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ (ℤ ∖ ℕ) ↔ -𝐴 ∈ ℕ0)) |
| 26 | 25 | notbid 318 | . . 3 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ (ℤ ∖ ℕ) ↔ ¬ -𝐴 ∈ ℕ0)) |
| 27 | 26 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
| 28 | 1, 27 | bitri 275 | 1 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 class class class wbr 5119 ℂcc 11127 ℝcr 11128 0cc0 11129 < clt 11269 ≤ cle 11270 -cneg 11467 ℕcn 12240 ℕ0cn0 12501 ℤcz 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 |
| This theorem is referenced by: dmgmaddn0 26985 dmlogdmgm 26986 dmgmaddnn0 26989 lgamgulmlem1 26991 lgamucov 27000 |
| Copyright terms: Public domain | W3C validator |