MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmgm Structured version   Visualization version   GIF version

Theorem eldmgm 26076
Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
eldmgm (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))

Proof of Theorem eldmgm
StepHypRef Expression
1 eldif 3893 . 2 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)))
2 eldif 3893 . . . . 5 (𝐴 ∈ (ℤ ∖ ℕ) ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ))
3 elznn 12265 . . . . . . . 8 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0)))
43simprbi 496 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0))
54orcanai 999 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) → -𝐴 ∈ ℕ0)
6 negneg 11201 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
76adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 = 𝐴)
8 nn0negz 12288 . . . . . . . . . 10 (-𝐴 ∈ ℕ0 → --𝐴 ∈ ℤ)
98adantl 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 ∈ ℤ)
107, 9eqeltrrd 2840 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
1110ex 412 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0𝐴 ∈ ℤ))
12 nngt0 11934 . . . . . . . . . 10 (𝐴 ∈ ℕ → 0 < 𝐴)
13 nnre 11910 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1413lt0neg2d 11475 . . . . . . . . . 10 (𝐴 ∈ ℕ → (0 < 𝐴 ↔ -𝐴 < 0))
1512, 14mpbid 231 . . . . . . . . 9 (𝐴 ∈ ℕ → -𝐴 < 0)
1613renegcld 11332 . . . . . . . . . 10 (𝐴 ∈ ℕ → -𝐴 ∈ ℝ)
17 0re 10908 . . . . . . . . . 10 0 ∈ ℝ
18 ltnle 10985 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴))
1916, 17, 18sylancl 585 . . . . . . . . 9 (𝐴 ∈ ℕ → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴))
2015, 19mpbid 231 . . . . . . . 8 (𝐴 ∈ ℕ → ¬ 0 ≤ -𝐴)
21 nn0ge0 12188 . . . . . . . 8 (-𝐴 ∈ ℕ0 → 0 ≤ -𝐴)
2220, 21nsyl3 138 . . . . . . 7 (-𝐴 ∈ ℕ0 → ¬ 𝐴 ∈ ℕ)
2311, 22jca2 513 . . . . . 6 (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ)))
245, 23impbid2 225 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) ↔ -𝐴 ∈ ℕ0))
252, 24syl5bb 282 . . . 4 (𝐴 ∈ ℂ → (𝐴 ∈ (ℤ ∖ ℕ) ↔ -𝐴 ∈ ℕ0))
2625notbid 317 . . 3 (𝐴 ∈ ℂ → (¬ 𝐴 ∈ (ℤ ∖ ℕ) ↔ ¬ -𝐴 ∈ ℕ0))
2726pm5.32i 574 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
281, 27bitri 274 1 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  cdif 3880   class class class wbr 5070  cc 10800  cr 10801  0cc0 10802   < clt 10940  cle 10941  -cneg 11136  cn 11903  0cn0 12163  cz 12249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250
This theorem is referenced by:  dmgmaddn0  26077  dmlogdmgm  26078  dmgmaddnn0  26081  lgamgulmlem1  26083  lgamucov  26092
  Copyright terms: Public domain W3C validator