Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmgm Structured version   Visualization version   GIF version

Theorem eldmgm 25586
 Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
eldmgm (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))

Proof of Theorem eldmgm
StepHypRef Expression
1 eldif 3920 . 2 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)))
2 eldif 3920 . . . . 5 (𝐴 ∈ (ℤ ∖ ℕ) ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ))
3 elznn 11975 . . . . . . . 8 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0)))
43simprbi 500 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0))
54orcanai 1000 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) → -𝐴 ∈ ℕ0)
6 negneg 10913 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
76adantr 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 = 𝐴)
8 nn0negz 11998 . . . . . . . . . 10 (-𝐴 ∈ ℕ0 → --𝐴 ∈ ℤ)
98adantl 485 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 ∈ ℤ)
107, 9eqeltrrd 2913 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
1110ex 416 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0𝐴 ∈ ℤ))
12 nngt0 11646 . . . . . . . . . 10 (𝐴 ∈ ℕ → 0 < 𝐴)
13 nnre 11622 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1413lt0neg2d 11187 . . . . . . . . . 10 (𝐴 ∈ ℕ → (0 < 𝐴 ↔ -𝐴 < 0))
1512, 14mpbid 235 . . . . . . . . 9 (𝐴 ∈ ℕ → -𝐴 < 0)
1613renegcld 11044 . . . . . . . . . 10 (𝐴 ∈ ℕ → -𝐴 ∈ ℝ)
17 0re 10620 . . . . . . . . . 10 0 ∈ ℝ
18 ltnle 10697 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴))
1916, 17, 18sylancl 589 . . . . . . . . 9 (𝐴 ∈ ℕ → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴))
2015, 19mpbid 235 . . . . . . . 8 (𝐴 ∈ ℕ → ¬ 0 ≤ -𝐴)
21 nn0ge0 11900 . . . . . . . 8 (-𝐴 ∈ ℕ0 → 0 ≤ -𝐴)
2220, 21nsyl3 140 . . . . . . 7 (-𝐴 ∈ ℕ0 → ¬ 𝐴 ∈ ℕ)
2311, 22jca2 517 . . . . . 6 (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ)))
245, 23impbid2 229 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) ↔ -𝐴 ∈ ℕ0))
252, 24syl5bb 286 . . . 4 (𝐴 ∈ ℂ → (𝐴 ∈ (ℤ ∖ ℕ) ↔ -𝐴 ∈ ℕ0))
2625notbid 321 . . 3 (𝐴 ∈ ℂ → (¬ 𝐴 ∈ (ℤ ∖ ℕ) ↔ ¬ -𝐴 ∈ ℕ0))
2726pm5.32i 578 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
281, 27bitri 278 1 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115   ∖ cdif 3907   class class class wbr 5039  ℂcc 10512  ℝcr 10513  0cc0 10514   < clt 10652   ≤ cle 10653  -cneg 10848  ℕcn 11615  ℕ0cn0 11875  ℤcz 11959 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960 This theorem is referenced by:  dmgmaddn0  25587  dmlogdmgm  25588  dmgmaddnn0  25591  lgamgulmlem1  25593  lgamucov  25602
 Copyright terms: Public domain W3C validator