MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmgm Structured version   Visualization version   GIF version

Theorem eldmgm 25599
Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
eldmgm (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))

Proof of Theorem eldmgm
StepHypRef Expression
1 eldif 3946 . 2 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)))
2 eldif 3946 . . . . 5 (𝐴 ∈ (ℤ ∖ ℕ) ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ))
3 elznn 11998 . . . . . . . 8 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0)))
43simprbi 499 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0))
54orcanai 999 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) → -𝐴 ∈ ℕ0)
6 negneg 10936 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
76adantr 483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 = 𝐴)
8 nn0negz 12021 . . . . . . . . . 10 (-𝐴 ∈ ℕ0 → --𝐴 ∈ ℤ)
98adantl 484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 ∈ ℤ)
107, 9eqeltrrd 2914 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
1110ex 415 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0𝐴 ∈ ℤ))
12 nngt0 11669 . . . . . . . . . 10 (𝐴 ∈ ℕ → 0 < 𝐴)
13 nnre 11645 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1413lt0neg2d 11210 . . . . . . . . . 10 (𝐴 ∈ ℕ → (0 < 𝐴 ↔ -𝐴 < 0))
1512, 14mpbid 234 . . . . . . . . 9 (𝐴 ∈ ℕ → -𝐴 < 0)
1613renegcld 11067 . . . . . . . . . 10 (𝐴 ∈ ℕ → -𝐴 ∈ ℝ)
17 0re 10643 . . . . . . . . . 10 0 ∈ ℝ
18 ltnle 10720 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴))
1916, 17, 18sylancl 588 . . . . . . . . 9 (𝐴 ∈ ℕ → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴))
2015, 19mpbid 234 . . . . . . . 8 (𝐴 ∈ ℕ → ¬ 0 ≤ -𝐴)
21 nn0ge0 11923 . . . . . . . 8 (-𝐴 ∈ ℕ0 → 0 ≤ -𝐴)
2220, 21nsyl3 140 . . . . . . 7 (-𝐴 ∈ ℕ0 → ¬ 𝐴 ∈ ℕ)
2311, 22jca2 516 . . . . . 6 (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ)))
245, 23impbid2 228 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) ↔ -𝐴 ∈ ℕ0))
252, 24syl5bb 285 . . . 4 (𝐴 ∈ ℂ → (𝐴 ∈ (ℤ ∖ ℕ) ↔ -𝐴 ∈ ℕ0))
2625notbid 320 . . 3 (𝐴 ∈ ℂ → (¬ 𝐴 ∈ (ℤ ∖ ℕ) ↔ ¬ -𝐴 ∈ ℕ0))
2726pm5.32i 577 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
281, 27bitri 277 1 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  cdif 3933   class class class wbr 5066  cc 10535  cr 10536  0cc0 10537   < clt 10675  cle 10676  -cneg 10871  cn 11638  0cn0 11898  cz 11982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983
This theorem is referenced by:  dmgmaddn0  25600  dmlogdmgm  25601  dmgmaddnn0  25604  lgamgulmlem1  25606  lgamucov  25615
  Copyright terms: Public domain W3C validator