Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eldmgm | Structured version Visualization version GIF version |
Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.) |
Ref | Expression |
---|---|
eldmgm | ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3907 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ))) | |
2 | eldif 3907 | . . . . 5 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ)) | |
3 | elznn 12408 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0))) | |
4 | 3 | simprbi 497 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0)) |
5 | 4 | orcanai 1000 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) → -𝐴 ∈ ℕ0) |
6 | negneg 11344 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
7 | 6 | adantr 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 = 𝐴) |
8 | nn0negz 12431 | . . . . . . . . . 10 ⊢ (-𝐴 ∈ ℕ0 → --𝐴 ∈ ℤ) | |
9 | 8 | adantl 482 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 ∈ ℤ) |
10 | 7, 9 | eqeltrrd 2839 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
11 | 10 | ex 413 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ)) |
12 | nngt0 12077 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
13 | nnre 12053 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
14 | 13 | lt0neg2d 11618 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → (0 < 𝐴 ↔ -𝐴 < 0)) |
15 | 12, 14 | mpbid 231 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → -𝐴 < 0) |
16 | 13 | renegcld 11475 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → -𝐴 ∈ ℝ) |
17 | 0re 11050 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
18 | ltnle 11127 | . . . . . . . . . 10 ⊢ ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) | |
19 | 16, 17, 18 | sylancl 586 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) |
20 | 15, 19 | mpbid 231 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ¬ 0 ≤ -𝐴) |
21 | nn0ge0 12331 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℕ0 → 0 ≤ -𝐴) | |
22 | 20, 21 | nsyl3 138 | . . . . . . 7 ⊢ (-𝐴 ∈ ℕ0 → ¬ 𝐴 ∈ ℕ) |
23 | 11, 22 | jca2 514 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ))) |
24 | 5, 23 | impbid2 225 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) ↔ -𝐴 ∈ ℕ0)) |
25 | 2, 24 | bitrid 282 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ (ℤ ∖ ℕ) ↔ -𝐴 ∈ ℕ0)) |
26 | 25 | notbid 317 | . . 3 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ (ℤ ∖ ℕ) ↔ ¬ -𝐴 ∈ ℕ0)) |
27 | 26 | pm5.32i 575 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
28 | 1, 27 | bitri 274 | 1 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∖ cdif 3894 class class class wbr 5087 ℂcc 10942 ℝcr 10943 0cc0 10944 < clt 11082 ≤ cle 11083 -cneg 11279 ℕcn 12046 ℕ0cn0 12306 ℤcz 12392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-n0 12307 df-z 12393 |
This theorem is referenced by: dmgmaddn0 26244 dmlogdmgm 26245 dmgmaddnn0 26248 lgamgulmlem1 26250 lgamucov 26259 |
Copyright terms: Public domain | W3C validator |