| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmgm | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.) |
| Ref | Expression |
|---|---|
| eldmgm | ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3941 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ))) | |
| 2 | eldif 3941 | . . . . 5 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ)) | |
| 3 | elznn 12612 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0))) | |
| 4 | 3 | simprbi 496 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0)) |
| 5 | 4 | orcanai 1004 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) → -𝐴 ∈ ℕ0) |
| 6 | negneg 11541 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
| 7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 = 𝐴) |
| 8 | nn0negz 12638 | . . . . . . . . . 10 ⊢ (-𝐴 ∈ ℕ0 → --𝐴 ∈ ℤ) | |
| 9 | 8 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 ∈ ℤ) |
| 10 | 7, 9 | eqeltrrd 2834 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
| 11 | 10 | ex 412 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ)) |
| 12 | nngt0 12279 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
| 13 | nnre 12255 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
| 14 | 13 | lt0neg2d 11815 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → (0 < 𝐴 ↔ -𝐴 < 0)) |
| 15 | 12, 14 | mpbid 232 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → -𝐴 < 0) |
| 16 | 13 | renegcld 11672 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → -𝐴 ∈ ℝ) |
| 17 | 0re 11245 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 18 | ltnle 11322 | . . . . . . . . . 10 ⊢ ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) | |
| 19 | 16, 17, 18 | sylancl 586 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) |
| 20 | 15, 19 | mpbid 232 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ¬ 0 ≤ -𝐴) |
| 21 | nn0ge0 12534 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℕ0 → 0 ≤ -𝐴) | |
| 22 | 20, 21 | nsyl3 138 | . . . . . . 7 ⊢ (-𝐴 ∈ ℕ0 → ¬ 𝐴 ∈ ℕ) |
| 23 | 11, 22 | jca2 513 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ))) |
| 24 | 5, 23 | impbid2 226 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) ↔ -𝐴 ∈ ℕ0)) |
| 25 | 2, 24 | bitrid 283 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ (ℤ ∖ ℕ) ↔ -𝐴 ∈ ℕ0)) |
| 26 | 25 | notbid 318 | . . 3 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ (ℤ ∖ ℕ) ↔ ¬ -𝐴 ∈ ℕ0)) |
| 27 | 26 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
| 28 | 1, 27 | bitri 275 | 1 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ∖ cdif 3928 class class class wbr 5123 ℂcc 11135 ℝcr 11136 0cc0 11137 < clt 11277 ≤ cle 11278 -cneg 11475 ℕcn 12248 ℕ0cn0 12509 ℤcz 12596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-n0 12510 df-z 12597 |
| This theorem is referenced by: dmgmaddn0 27002 dmlogdmgm 27003 dmgmaddnn0 27006 lgamgulmlem1 27008 lgamucov 27017 |
| Copyright terms: Public domain | W3C validator |