![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldmgm | Structured version Visualization version GIF version |
Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.) |
Ref | Expression |
---|---|
eldmgm | ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3986 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ))) | |
2 | eldif 3986 | . . . . 5 ⊢ (𝐴 ∈ (ℤ ∖ ℕ) ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ)) | |
3 | elznn 12655 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0))) | |
4 | 3 | simprbi 496 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0)) |
5 | 4 | orcanai 1003 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) → -𝐴 ∈ ℕ0) |
6 | negneg 11586 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | |
7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 = 𝐴) |
8 | nn0negz 12681 | . . . . . . . . . 10 ⊢ (-𝐴 ∈ ℕ0 → --𝐴 ∈ ℤ) | |
9 | 8 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 ∈ ℤ) |
10 | 7, 9 | eqeltrrd 2845 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ) |
11 | 10 | ex 412 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ)) |
12 | nngt0 12324 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
13 | nnre 12300 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
14 | 13 | lt0neg2d 11860 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → (0 < 𝐴 ↔ -𝐴 < 0)) |
15 | 12, 14 | mpbid 232 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → -𝐴 < 0) |
16 | 13 | renegcld 11717 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℕ → -𝐴 ∈ ℝ) |
17 | 0re 11292 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
18 | ltnle 11369 | . . . . . . . . . 10 ⊢ ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) | |
19 | 16, 17, 18 | sylancl 585 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℕ → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴)) |
20 | 15, 19 | mpbid 232 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → ¬ 0 ≤ -𝐴) |
21 | nn0ge0 12578 | . . . . . . . 8 ⊢ (-𝐴 ∈ ℕ0 → 0 ≤ -𝐴) | |
22 | 20, 21 | nsyl3 138 | . . . . . . 7 ⊢ (-𝐴 ∈ ℕ0 → ¬ 𝐴 ∈ ℕ) |
23 | 11, 22 | jca2 513 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ))) |
24 | 5, 23 | impbid2 226 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) ↔ -𝐴 ∈ ℕ0)) |
25 | 2, 24 | bitrid 283 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ (ℤ ∖ ℕ) ↔ -𝐴 ∈ ℕ0)) |
26 | 25 | notbid 318 | . . 3 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ (ℤ ∖ ℕ) ↔ ¬ -𝐴 ∈ ℕ0)) |
27 | 26 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
28 | 1, 27 | bitri 275 | 1 ⊢ (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 class class class wbr 5166 ℂcc 11182 ℝcr 11183 0cc0 11184 < clt 11324 ≤ cle 11325 -cneg 11521 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 |
This theorem is referenced by: dmgmaddn0 27084 dmlogdmgm 27085 dmgmaddnn0 27088 lgamgulmlem1 27090 lgamucov 27099 |
Copyright terms: Public domain | W3C validator |