MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  igamval Structured version   Visualization version   GIF version

Theorem igamval 26548
Description: Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.)
Assertion
Ref Expression
igamval (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))

Proof of Theorem igamval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2821 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ (ℤ ∖ ℕ) ↔ 𝐴 ∈ (ℤ ∖ ℕ)))
2 fveq2 6891 . . . 4 (𝑥 = 𝐴 → (Γ‘𝑥) = (Γ‘𝐴))
32oveq2d 7424 . . 3 (𝑥 = 𝐴 → (1 / (Γ‘𝑥)) = (1 / (Γ‘𝐴)))
41, 3ifbieq2d 4554 . 2 (𝑥 = 𝐴 → if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
5 df-igam 26522 . 2 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))))
6 c0ex 11207 . . 3 0 ∈ V
7 ovex 7441 . . 3 (1 / (Γ‘𝐴)) ∈ V
86, 7ifex 4578 . 2 if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) ∈ V
94, 5, 8fvmpt 6998 1 (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cdif 3945  ifcif 4528  cfv 6543  (class class class)co 7408  cc 11107  0cc0 11109  1c1 11110   / cdiv 11870  cn 12211  cz 12557  Γcgam 26518  1/Γcigam 26519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-mulcl 11171  ax-i2m1 11177
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-igam 26522
This theorem is referenced by:  igamz  26549  igamgam  26550  igamcl  26553
  Copyright terms: Public domain W3C validator