![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > igamval | Structured version Visualization version GIF version |
Description: Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
Ref | Expression |
---|---|
igamval | ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2815 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (ℤ ∖ ℕ) ↔ 𝐴 ∈ (ℤ ∖ ℕ))) | |
2 | fveq2 6884 | . . . 4 ⊢ (𝑥 = 𝐴 → (Γ‘𝑥) = (Γ‘𝐴)) | |
3 | 2 | oveq2d 7420 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (Γ‘𝑥)) = (1 / (Γ‘𝐴))) |
4 | 1, 3 | ifbieq2d 4549 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
5 | df-igam 26903 | . 2 ⊢ 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥)))) | |
6 | c0ex 11209 | . . 3 ⊢ 0 ∈ V | |
7 | ovex 7437 | . . 3 ⊢ (1 / (Γ‘𝐴)) ∈ V | |
8 | 6, 7 | ifex 4573 | . 2 ⊢ if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) ∈ V |
9 | 4, 5, 8 | fvmpt 6991 | 1 ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3940 ifcif 4523 ‘cfv 6536 (class class class)co 7404 ℂcc 11107 0cc0 11109 1c1 11110 / cdiv 11872 ℕcn 12213 ℤcz 12559 Γcgam 26899 1/Γcigam 26900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-mulcl 11171 ax-i2m1 11177 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-ov 7407 df-igam 26903 |
This theorem is referenced by: igamz 26930 igamgam 26931 igamcl 26934 |
Copyright terms: Public domain | W3C validator |