![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > igamval | Structured version Visualization version GIF version |
Description: Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
Ref | Expression |
---|---|
igamval | ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2817 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (ℤ ∖ ℕ) ↔ 𝐴 ∈ (ℤ ∖ ℕ))) | |
2 | fveq2 6902 | . . . 4 ⊢ (𝑥 = 𝐴 → (Γ‘𝑥) = (Γ‘𝐴)) | |
3 | 2 | oveq2d 7442 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (Γ‘𝑥)) = (1 / (Γ‘𝐴))) |
4 | 1, 3 | ifbieq2d 4558 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
5 | df-igam 26973 | . 2 ⊢ 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥)))) | |
6 | c0ex 11246 | . . 3 ⊢ 0 ∈ V | |
7 | ovex 7459 | . . 3 ⊢ (1 / (Γ‘𝐴)) ∈ V | |
8 | 6, 7 | ifex 4582 | . 2 ⊢ if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) ∈ V |
9 | 4, 5, 8 | fvmpt 7010 | 1 ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3946 ifcif 4532 ‘cfv 6553 (class class class)co 7426 ℂcc 11144 0cc0 11146 1c1 11147 / cdiv 11909 ℕcn 12250 ℤcz 12596 Γcgam 26969 1/Γcigam 26970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-mulcl 11208 ax-i2m1 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7429 df-igam 26973 |
This theorem is referenced by: igamz 27000 igamgam 27001 igamcl 27004 |
Copyright terms: Public domain | W3C validator |