MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  igamval Structured version   Visualization version   GIF version

Theorem igamval 26957
Description: Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.)
Assertion
Ref Expression
igamval (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))

Proof of Theorem igamval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2816 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ (ℤ ∖ ℕ) ↔ 𝐴 ∈ (ℤ ∖ ℕ)))
2 fveq2 6858 . . . 4 (𝑥 = 𝐴 → (Γ‘𝑥) = (Γ‘𝐴))
32oveq2d 7403 . . 3 (𝑥 = 𝐴 → (1 / (Γ‘𝑥)) = (1 / (Γ‘𝐴)))
41, 3ifbieq2d 4515 . 2 (𝑥 = 𝐴 → if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
5 df-igam 26931 . 2 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))))
6 c0ex 11168 . . 3 0 ∈ V
7 ovex 7420 . . 3 (1 / (Γ‘𝐴)) ∈ V
86, 7ifex 4539 . 2 if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) ∈ V
94, 5, 8fvmpt 6968 1 (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3911  ifcif 4488  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   / cdiv 11835  cn 12186  cz 12529  Γcgam 26927  1/Γcigam 26928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-mulcl 11130  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-igam 26931
This theorem is referenced by:  igamz  26958  igamgam  26959  igamcl  26962
  Copyright terms: Public domain W3C validator