| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > igamval | Structured version Visualization version GIF version | ||
| Description: Value of the inverse Gamma function. (Contributed by Mario Carneiro, 16-Jul-2017.) |
| Ref | Expression |
|---|---|
| igamval | ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ (ℤ ∖ ℕ) ↔ 𝐴 ∈ (ℤ ∖ ℕ))) | |
| 2 | fveq2 6822 | . . . 4 ⊢ (𝑥 = 𝐴 → (Γ‘𝑥) = (Γ‘𝐴)) | |
| 3 | 2 | oveq2d 7362 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (Γ‘𝑥)) = (1 / (Γ‘𝐴))) |
| 4 | 1, 3 | ifbieq2d 4502 | . 2 ⊢ (𝑥 = 𝐴 → if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
| 5 | df-igam 26956 | . 2 ⊢ 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥)))) | |
| 6 | c0ex 11103 | . . 3 ⊢ 0 ∈ V | |
| 7 | ovex 7379 | . . 3 ⊢ (1 / (Γ‘𝐴)) ∈ V | |
| 8 | 6, 7 | ifex 4526 | . 2 ⊢ if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴))) ∈ V |
| 9 | 4, 5, 8 | fvmpt 6929 | 1 ⊢ (𝐴 ∈ ℂ → (1/Γ‘𝐴) = if(𝐴 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ifcif 4475 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 / cdiv 11771 ℕcn 12122 ℤcz 12465 Γcgam 26952 1/Γcigam 26953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-i2m1 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-igam 26956 |
| This theorem is referenced by: igamz 26983 igamgam 26984 igamcl 26987 |
| Copyright terms: Public domain | W3C validator |