HomeHome Metamath Proof Explorer
Theorem List (p. 268 of 461)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28866)
  Hilbert Space Explorer  Hilbert Space Explorer
(28867-30389)
  Users' Mathboxes  Users' Mathboxes
(30390-46010)
 

Theorem List for Metamath Proof Explorer - 26701-26800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremoppne2 26701* Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑 → ¬ 𝐵𝐷)
 
Theoremoppne3 26702* Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑𝐴𝐵)
 
Theoremoppcom 26703* Commutativity rule for "opposite" Theorem 9.2 of [Schwabhauser] p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑𝐵𝑂𝐴)
 
Theoremopptgdim2 26704* If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑𝐺DimTarskiG≥2)
 
Theoremoppnid 26705* The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)       (𝜑 → ¬ 𝐴𝑂𝐴)
 
Theoremopphllem1 26706* Lemma for opphl 26713. (Contributed by Thierry Arnoux, 20-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝑀𝐷)    &   (𝜑𝐴 = (𝑆𝐶))    &   (𝜑𝐴𝑅)    &   (𝜑𝐵𝑅)    &   (𝜑𝐵 ∈ (𝑅𝐼𝐴))       (𝜑𝐵𝑂𝐶)
 
Theoremopphllem2 26707* Lemma for opphl 26713. Lemma 9.3 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 21-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝑆 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝑀𝐷)    &   (𝜑𝐴 = (𝑆𝐶))    &   (𝜑𝐴𝑅)    &   (𝜑𝐵𝑅)    &   (𝜑 → (𝐴 ∈ (𝑅𝐼𝐵) ∨ 𝐵 ∈ (𝑅𝐼𝐴)))       (𝜑𝐵𝑂𝐶)
 
Theoremopphllem3 26708* Lemma for opphl 26713: We assume opphllem3.l "without loss of generality". (Contributed by Thierry Arnoux, 21-Feb-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   𝑁 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝑆𝐷)    &   (𝜑𝑀𝑃)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))    &   (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))    &   (𝜑𝑅𝑆)    &   (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))    &   (𝜑𝑈𝑃)    &   (𝜑 → (𝑁𝑅) = 𝑆)       (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
 
Theoremopphllem4 26709* Lemma for opphl 26713. (Contributed by Thierry Arnoux, 22-Feb-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   𝑁 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝑆𝐷)    &   (𝜑𝑀𝑃)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))    &   (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))    &   (𝜑𝑅𝑆)    &   (𝜑 → (𝑆 𝐶)(≤G‘𝐺)(𝑅 𝐴))    &   (𝜑𝑈𝑃)    &   (𝜑 → (𝑁𝑅) = 𝑆)    &   (𝜑𝑉𝑃)    &   (𝜑𝑈(𝐾𝑅)𝐴)    &   (𝜑𝑉(𝐾𝑆)𝐶)       (𝜑𝑈𝑂𝑉)
 
Theoremopphllem5 26710* Second part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 2-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   𝑁 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝑆𝐷)    &   (𝜑𝑀𝑃)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))    &   (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))    &   (𝜑𝑈𝑃)    &   (𝜑𝑉𝑃)    &   (𝜑𝑈(𝐾𝑅)𝐴)    &   (𝜑𝑉(𝐾𝑆)𝐶)       (𝜑𝑈𝑂𝑉)
 
Theoremopphllem6 26711* First part of Lemma 9.4 of [Schwabhauser] p. 68. (Contributed by Thierry Arnoux, 3-Mar-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   𝑁 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝐴𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝐷)    &   (𝜑𝑆𝐷)    &   (𝜑𝑀𝑃)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝐷(⟂G‘𝐺)(𝐴𝐿𝑅))    &   (𝜑𝐷(⟂G‘𝐺)(𝐶𝐿𝑆))    &   (𝜑𝑈𝑃)    &   (𝜑 → (𝑁𝑅) = 𝑆)       (𝜑 → (𝑈(𝐾𝑅)𝐴 ↔ (𝑁𝑈)(𝐾𝑆)𝐶))
 
Theoremoppperpex 26712* Restating colperpex 26692 using the "opposite side of a line" relation. (Contributed by Thierry Arnoux, 2-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑃)    &   (𝜑 → ¬ 𝐶𝐷)    &   (𝜑𝐺DimTarskiG≥2)       (𝜑 → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)𝐷𝐶𝑂𝑝))
 
Theoremopphl 26713* If two points 𝐴 and 𝐶 lie on opposite sides of a line 𝐷, then any point of the half line (𝑅𝐴) also lies opposite to 𝐶. Theorem 9.5 of [Schwabhauser] p. 69. (Contributed by Thierry Arnoux, 3-Mar-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐴𝑂𝐶)    &   (𝜑𝑅𝐷)    &   (𝜑𝐴(𝐾𝑅)𝐵)       (𝜑𝐵𝑂𝐶)
 
Theoremoutpasch 26714* Axiom of Pasch, outer form. This was proven by Gupta from other axioms and is therefore presented as Theorem 9.6 in [Schwabhauser] p. 70. (Contributed by Thierry Arnoux, 16-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑅𝑃)    &   (𝜑𝑄𝑃)    &   (𝜑𝐶 ∈ (𝐴𝐼𝑅))    &   (𝜑𝑄 ∈ (𝐵𝐼𝐶))       (𝜑 → ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐵) ∧ 𝑄 ∈ (𝑅𝐼𝑥)))
 
Theoremhlpasch 26715* An application of the axiom of Pasch for half-lines. (Contributed by Thierry Arnoux, 15-Sep-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝑋𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶(𝐾𝐵)𝐷)    &   (𝜑𝐴 ∈ (𝑋𝐼𝐶))       (𝜑 → ∃𝑒𝑃 (𝐴(𝐾𝐵)𝑒𝑒 ∈ (𝑋𝐼𝐷)))
 
Syntaxchpg 26716 "Belong to the same open half-plane" relation for points in a geometry.
class hpG
 
Definitiondf-hpg 26717* Define the open half plane relation for a geometry 𝐺. Definition 9.7 of [Schwabhauser] p. 71. See hpgbr 26719 to find the same formulation. (Contributed by Thierry Arnoux, 4-Mar-2020.)
hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}))
 
Theoremishpg 26718* Value of the half-plane relation for a given line 𝐷. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)       (𝜑 → ((hpG‘𝐺)‘𝐷) = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑃 (𝑎𝑂𝑐𝑏𝑂𝑐)})
 
Theoremhpgbr 26719* Half-planes : property for points 𝐴 and 𝐵 to belong to the same open half plane delimited by line 𝐷. Definition 9.7 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
 
Theoremhpgne1 26720* Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)       (𝜑 → ¬ 𝐴𝐷)
 
Theoremhpgne2 26721* Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)       (𝜑 → ¬ 𝐵𝐷)
 
Theoremlnopp2hpgb 26722* Theorem 9.8 of [Schwabhauser] p. 71. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐴𝑂𝐶)       (𝜑 → (𝐵𝑂𝐶𝐴((hpG‘𝐺)‘𝐷)𝐵))
 
Theoremlnoppnhpg 26723* If two points lie on the opposite side of a line 𝐷, they are not on the same half-plane. Theorem 9.9 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐴𝑂𝐵)       (𝜑 → ¬ 𝐴((hpG‘𝐺)‘𝐷)𝐵)
 
Theoremhpgerlem 26724* Lemma for the proof that the half-plane relation is an equivalence relation. Lemma 9.10 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑 → ¬ 𝐴𝐷)       (𝜑 → ∃𝑐𝑃 𝐴𝑂𝑐)
 
Theoremhpgid 26725* The half-plane relation is reflexive. Theorem 9.11 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑 → ¬ 𝐴𝐷)       (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐴)
 
Theoremhpgcom 26726* The half-plane relation commutes. Theorem 9.12 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐵𝑃)    &   (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)       (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐴)
 
Theoremhpgtr 26727* The half-plane relation is transitive. Theorem 9.13 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐵𝑃)    &   (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)    &   (𝜑𝐶𝑃)    &   (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)       (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐶)
 
Theoremcolopp 26728* Opposite sides of a line for colinear points. Theorem 9.18 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝐷)    &   (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))       (𝜑 → (𝐴𝑂𝐵 ↔ (𝐶 ∈ (𝐴𝐼𝐵) ∧ ¬ 𝐴𝐷 ∧ ¬ 𝐵𝐷)))
 
Theoremcolhp 26729* Half-plane relation for colinear points. Theorem 9.19 of [Schwabhauser] p. 73. (Contributed by Thierry Arnoux, 3-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝐷)    &   (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))    &   𝐾 = (hlG‘𝐺)       (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ (𝐴(𝐾𝐶)𝐵 ∧ ¬ 𝐴𝐷)))
 
Theoremhphl 26730* If two points are on the same half-line with endpoint on a line, they are on the same half-plane defined by this line. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝐷)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑 → ¬ 𝐵𝐷)    &   (𝜑𝐵(𝐾𝐴)𝐶)       (𝜑𝐵((hpG‘𝐺)‘𝐷)𝐶)
 
15.2.15  Midpoints and Line Mirroring
 
Syntaxcmid 26731 Declare the constant for the midpoint operation.
class midG
 
Syntaxclmi 26732 Declare the constant for the line mirroring function.
class lInvG
 
Definitiondf-mid 26733* Define the midpoint operation. Definition 10.1 of [Schwabhauser] p. 88. See ismidb 26737, midbtwn 26738, and midcgr 26739. (Contributed by Thierry Arnoux, 9-Jun-2019.)
midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))))
 
Definitiondf-lmi 26734* Define the line mirroring function. Definition 10.3 of [Schwabhauser] p. 89. See islmib 26746. (Contributed by Thierry Arnoux, 1-Dec-2019.)
lInvG = (𝑔 ∈ V ↦ (𝑚 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))))
 
Theoremmidf 26735 Midpoint as a function. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)       (𝜑 → (midG‘𝐺):(𝑃 × 𝑃)⟶𝑃)
 
Theoremmidcl 26736 Closure of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ 𝑃)
 
Theoremismidb 26737 Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   𝑆 = (pInvG‘𝐺)    &   (𝜑𝑀𝑃)       (𝜑 → (𝐵 = ((𝑆𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀))
 
Theoremmidbtwn 26738 Betweenness of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴(midG‘𝐺)𝐵) ∈ (𝐴𝐼𝐵))
 
Theoremmidcgr 26739 Congruence of midpoint. (Contributed by Thierry Arnoux, 7-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑 → (𝐴(midG‘𝐺)𝐵) = 𝐶)       (𝜑 → (𝐶 𝐴) = (𝐶 𝐵))
 
Theoremmidid 26740 Midpoint of a null segment. (Contributed by Thierry Arnoux, 7-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴(midG‘𝐺)𝐴) = 𝐴)
 
Theoremmidcom 26741 Commutativity rule for the midpoint. (Contributed by Thierry Arnoux, 2-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐴(midG‘𝐺)𝐵) = (𝐵(midG‘𝐺)𝐴))
 
Theoremmirmid 26742 Point inversion preserves midpoints. (Contributed by Thierry Arnoux, 12-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   𝑆 = ((pInvG‘𝐺)‘𝑀)    &   (𝜑𝑀𝑃)       (𝜑 → ((𝑆𝐴)(midG‘𝐺)(𝑆𝐵)) = (𝑆‘(𝐴(midG‘𝐺)𝐵)))
 
Theoremlmieu 26743* Uniqueness of the line mirror point. Theorem 10.2 of [Schwabhauser] p. 88. (Contributed by Thierry Arnoux, 1-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)       (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
 
Theoremlmif 26744 Line mirror as a function. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)       (𝜑𝑀:𝑃𝑃)
 
Theoremlmicl 26745 Closure of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)       (𝜑 → (𝑀𝐴) ∈ 𝑃)
 
Theoremislmib 26746 Property of the line mirror. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → (𝐵 = (𝑀𝐴) ↔ ((𝐴(midG‘𝐺)𝐵) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))))
 
Theoremlmicom 26747 The line mirroring function is an involution. Theorem 10.4 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑 → (𝑀𝐴) = 𝐵)       (𝜑 → (𝑀𝐵) = 𝐴)
 
Theoremlmilmi 26748 Line mirroring is an involution. Theorem 10.5 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)       (𝜑 → (𝑀‘(𝑀𝐴)) = 𝐴)
 
Theoremlmireu 26749* Any point has a unique antecedent through line mirroring. Theorem 10.6 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)       (𝜑 → ∃!𝑏𝑃 (𝑀𝑏) = 𝐴)
 
Theoremlmieq 26750 Equality deduction for line mirroring. Theorem 10.7 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑 → (𝑀𝐴) = (𝑀𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremlmiinv 26751 The invariants of the line mirroring lie on the mirror line. Theorem 10.8 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)       (𝜑 → ((𝑀𝐴) = 𝐴𝐴𝐷))
 
Theoremlmicinv 26752 The mirroring line is an invariant. (Contributed by Thierry Arnoux, 8-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐴𝐷)       (𝜑 → (𝑀𝐴) = 𝐴)
 
Theoremlmimid 26753 If we have a right angle, then the mirror point is the point inversion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   𝑆 = ((pInvG‘𝐺)‘𝐵)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑𝐴𝐷)    &   (𝜑𝐵𝐷)    &   (𝜑𝐶𝑃)    &   (𝜑𝐴𝐵)       (𝜑 → (𝑀𝐶) = (𝑆𝐶))
 
Theoremlmif1o 26754 The line mirroring function 𝑀 is a bijection. Theorem 10.9 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)       (𝜑𝑀:𝑃1-1-onto𝑃)
 
Theoremlmiisolem 26755 Lemma for lmiiso 26756. (Contributed by Thierry Arnoux, 14-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   𝑆 = ((pInvG‘𝐺)‘𝑍)    &   𝑍 = ((𝐴(midG‘𝐺)(𝑀𝐴))(midG‘𝐺)(𝐵(midG‘𝐺)(𝑀𝐵)))       (𝜑 → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
 
Theoremlmiiso 26756 The line mirroring function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 10.10 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)       (𝜑 → ((𝑀𝐴) (𝑀𝐵)) = (𝐴 𝐵))
 
Theoremlmimot 26757 Line mirroring is a motion of the geometric space. Theorem 10.11 of [Schwabhauser] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐷 ∈ ran 𝐿)       (𝜑𝑀 ∈ (𝐺Ismt𝐺))
 
Theoremhypcgrlem1 26758 Lemma for hypcgr 26760, case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))    &   (𝜑𝐵 = 𝐸)    &   𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))    &   (𝜑𝐶 = 𝐹)       (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
 
Theoremhypcgrlem2 26759 Lemma for hypcgr 26760, case where triangles share one vertex 𝐵. (Contributed by Thierry Arnoux, 16-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))    &   (𝜑𝐵 = 𝐸)    &   𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))       (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
 
Theoremhypcgr 26760 If the catheti of two right-angled triangles are congruent, so is their hypothenuse. Theorem 10.12 of [Schwabhauser] p. 91. (Contributed by Thierry Arnoux, 16-Dec-2019.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))       (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
 
Theoremlmiopp 26761* Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐷 ∈ ran 𝐿)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   𝑀 = ((lInvG‘𝐺)‘𝐷)    &   (𝜑𝐴𝑃)    &   (𝜑 → ¬ 𝐴𝐷)       (𝜑𝐴𝑂(𝑀𝐴))
 
Theoremlnperpex 26762* Existence of a perpendicular to a line 𝐿 at a given point 𝐴. Theorem 10.15 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐺DimTarskiG≥2)    &   (𝜑𝐷 ∈ ran 𝐿)    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝐴𝐷)    &   (𝜑𝑄𝑃)    &   (𝜑 → ¬ 𝑄𝐷)       (𝜑 → ∃𝑝𝑃 (𝐷(⟂G‘𝐺)(𝑝𝐿𝐴) ∧ 𝑝((hpG‘𝐺)‘𝐷)𝑄))
 
Theoremtrgcopy 26763* Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: existence part. First part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 4-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))    &   (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))       (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
 
Theoremtrgcopyeulem 26764* Lemma for trgcopyeu 26765. (Contributed by Thierry Arnoux, 8-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))    &   (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))    &   𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)    &   (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)    &   (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)       (𝜑𝑋 = 𝑌)
 
Theoremtrgcopyeu 26765* Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: uniqueness part. Second part of Theorem 10.16 of [Schwabhauser] p. 92. (Contributed by Thierry Arnoux, 8-Aug-2020.)
𝑃 = (Base‘𝐺)    &    = (dist‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐿 = (LineG‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))    &   (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))       (𝜑 → ∃!𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
 
15.2.16  Congruence of angles
 
Syntaxccgra 26766 Declare the constant for the congruence between angles relation.
class cgrA
 
Definitiondf-cgra 26767* Define the congruence relation between angles. As for triangles we use "words of points". See iscgra 26768 for a more human readable version. (Contributed by Thierry Arnoux, 30-Jul-2020.)
cgrA = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))})
 
Theoremiscgra 26768* Property for two angles ABC and DEF to be congruent. This is a modified version of the definition 11.3 of [Schwabhauser] p. 95. where the number of constructed points has been reduced to two. We chose this version rather than the textbook version because it is shorter and therefore simpler to work with. Theorem dfcgra2 26789 shows that those definitions are indeed equivalent. (Contributed by Thierry Arnoux, 31-Jul-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)       (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
 
Theoremiscgra1 26769* A special version of iscgra 26768 where one distance is known to be equal. In this case, angle congruence can be written with only one quantifier. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &    = (dist‘𝐺)    &   (𝜑𝐴𝐵)    &   (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))       (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
 
Theoremiscgrad 26770 Sufficient conditions for angle congruence, deduction version. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑋𝐸𝑌”⟩)    &   (𝜑𝑋(𝐾𝐸)𝐷)    &   (𝜑𝑌(𝐾𝐸)𝐹)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
 
Theoremcgrane1 26771 Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑𝐴𝐵)
 
Theoremcgrane2 26772 Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑𝐵𝐶)
 
Theoremcgrane3 26773 Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑𝐸𝐷)
 
Theoremcgrane4 26774 Angles imply inequality. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑𝐸𝐹)
 
Theoremcgrahl1 26775 Angle congruence is independent of the choice of points on the rays. Proposition 11.10 of [Schwabhauser] p. 95. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑𝑋𝑃)    &   (𝜑𝑋(𝐾𝐸)𝐷)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑋𝐸𝐹”⟩)
 
Theoremcgrahl2 26776 Angle congruence is independent of the choice of points on the rays. Proposition 11.10 of [Schwabhauser] p. 95. (Contributed by Thierry Arnoux, 1-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑𝑋𝑃)    &   (𝜑𝑋(𝐾𝐸)𝐹)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)
 
Theoremcgracgr 26777 First direction of proposition 11.4 of [Schwabhauser] p. 95. Again, this is "half" of the proposition, i.e. only two additional points are used, while Schwabhauser has four. (Contributed by Thierry Arnoux, 31-Jul-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑𝑋𝑃)    &    = (dist‘𝐺)    &   (𝜑𝑌𝑃)    &   (𝜑𝑋(𝐾𝐵)𝐴)    &   (𝜑𝑌(𝐾𝐵)𝐶)    &   (𝜑 → (𝐵 𝑋) = (𝐸 𝐷))    &   (𝜑 → (𝐵 𝑌) = (𝐸 𝐹))       (𝜑 → (𝑋 𝑌) = (𝐷 𝐹))
 
Theoremcgraid 26778 Angle congruence is reflexive. Theorem 11.6 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 31-Jul-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
 
Theoremcgraswap 26779 Swap rays in a congruence relation. Theorem 11.9 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 5-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
 
Theoremcgrcgra 26780 Triangle congruence implies angle congruence. This is a portion of CPCTC, focusing on a specific angle. (Contributed by Arnoux, 2-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐵𝐶)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
 
Theoremcgracom 26781 Angle congruence commutes. Theorem 11.7 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
 
Theoremcgratr 26782 Angle congruence is transitive. Theorem 11.8 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 5-Mar-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑𝐻𝑃)    &   (𝜑𝑈𝑃)    &   (𝜑𝐽𝑃)    &   (𝜑 → ⟨“𝐷𝐸𝐹”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐻𝑈𝐽”⟩)
 
Theoremflatcgra 26783 Flat angles are congruent. (Contributed by Thierry Arnoux, 13-Feb-2023.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))    &   (𝜑𝐸 ∈ (𝐷𝐼𝐹))    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐵)    &   (𝜑𝐷𝐸)    &   (𝜑𝐹𝐸)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
 
Theoremcgraswaplr 26784 Swap both side of angle congruence. (Contributed by Thierry Arnoux, 5-Oct-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)       (𝜑 → ⟨“𝐶𝐵𝐴”⟩(cgrA‘𝐺)⟨“𝐹𝐸𝐷”⟩)
 
Theoremcgrabtwn 26785 Angle congruence preserves flat angles. Part of Theorem 11.21 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))       (𝜑𝐸 ∈ (𝐷𝐼𝐹))
 
Theoremcgrahl 26786 Angle congruence preserves null angles. Part of Theorem 11.21 of [Schwabhauser] p. 97. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝐴(𝐾𝐵)𝐶)       (𝜑𝐷(𝐾𝐸)𝐹)
 
Theoremcgracol 26787 Angle congruence preserves colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   𝐿 = (LineG‘𝐺)    &   (𝜑 → (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))       (𝜑 → (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
 
Theoremcgrancol 26788 Angle congruence preserves non-colinearity. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   𝐿 = (LineG‘𝐺)    &   (𝜑 → ¬ (𝐶 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))       (𝜑 → ¬ (𝐹 ∈ (𝐷𝐿𝐸) ∨ 𝐷 = 𝐸))
 
Theoremdfcgra2 26789* This is the full statement of definition 11.2 of [Schwabhauser] p. 95. This proof serves to confirm that the definition we have chosen, df-cgra 26767 is indeed equivalent to the textbook's definition. (Contributed by Thierry Arnoux, 2-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)       (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ((𝐴𝐵𝐶𝐵) ∧ (𝐷𝐸𝐹𝐸) ∧ ∃𝑎𝑃𝑐𝑃𝑑𝑃𝑓𝑃 (((𝐴 ∈ (𝐵𝐼𝑎) ∧ (𝐴 𝑎) = (𝐸 𝐷)) ∧ (𝐶 ∈ (𝐵𝐼𝑐) ∧ (𝐶 𝑐) = (𝐸 𝐹))) ∧ ((𝐷 ∈ (𝐸𝐼𝑑) ∧ (𝐷 𝑑) = (𝐵 𝐴)) ∧ (𝐹 ∈ (𝐸𝐼𝑓) ∧ (𝐹 𝑓) = (𝐵 𝐶))) ∧ (𝑎 𝑐) = (𝑑 𝑓)))))
 
Theoremsacgr 26790 Supplementary angles of congruent angles are themselves congruent. Theorem 11.13 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 30-Sep-2020.) (Proof shortened by Igor Ieskov, 16-Feb-2023.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)    &   (𝜑𝐵 ∈ (𝐴𝐼𝑋))    &   (𝜑𝐸 ∈ (𝐷𝐼𝑌))    &   (𝜑𝐵𝑋)    &   (𝜑𝐸𝑌)       (𝜑 → ⟨“𝑋𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑌𝐸𝐹”⟩)
 
Theoremoacgr 26791 Vertical angle theorem. Vertical, or opposite angles are the facing pair of angles formed when two lines intersect. Eudemus of Rhodes attributed the proof to Thales of Miletus. The proposition showed that since both of a pair of vertical angles are supplementary to both of the adjacent angles, the vertical angles are equal in measure. We follow the same path. Theorem 11.14 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 27-Sep-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐷))    &   (𝜑𝐵 ∈ (𝐶𝐼𝐹))    &   (𝜑𝐵𝐴)    &   (𝜑𝐵𝐶)    &   (𝜑𝐵𝐷)    &   (𝜑𝐵𝐹)       (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐵𝐹”⟩)
 
Theoremacopy 26792* Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   𝐿 = (LineG‘𝐺)    &   (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))    &   (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))       (𝜑 → ∃𝑓𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑓”⟩ ∧ 𝑓((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹))
 
Theoremacopyeu 26793 Angle construction. Theorem 11.15 of [Schwabhauser] p. 98. This is Hilbert's axiom III.4 for geometry. Akin to a uniqueness theorem, this states that if two points 𝑋 and 𝑌 both fulfill the conditions, then they are on the same half-line. (Contributed by Thierry Arnoux, 9-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &    = (dist‘𝐺)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐷𝑃)    &   (𝜑𝐸𝑃)    &   (𝜑𝐹𝑃)    &   𝐿 = (LineG‘𝐺)    &   (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))    &   (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))    &   (𝜑𝑋𝑃)    &   (𝜑𝑌𝑃)    &   𝐾 = (hlG‘𝐺)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑋”⟩)    &   (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝑌”⟩)    &   (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)    &   (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)       (𝜑𝑋(𝐾𝐸)𝑌)
 
15.2.17  Angle Comparisons
 
Syntaxcinag 26794 Extend class relation with the geometrical "point in angle" relation.
class inA
 
Syntaxcleag 26795 Extend class relation with the "angle less than" relation.
class
 
Definitiondf-inag 26796* Definition of the geometrical "in angle" relation. (Contributed by Thierry Arnoux, 15-Aug-2020.)
inA = (𝑔 ∈ V ↦ {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))})
 
Theoremisinag 26797* Property for point 𝑋 to lie in the angle ⟨“𝐴𝐵𝐶”⟩. Definition 11.23 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺𝑉)       (𝜑 → (𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩ ↔ ((𝐴𝐵𝐶𝐵𝑋𝐵) ∧ ∃𝑥𝑃 (𝑥 ∈ (𝐴𝐼𝐶) ∧ (𝑥 = 𝐵𝑥(𝐾𝐵)𝑋)))))
 
Theoremisinagd 26798 Sufficient conditions for in-angle relation, deduction version. (Contributed by Thierry Arnoux, 20-Oct-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺𝑉)    &   (𝜑𝑌𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐵)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌 ∈ (𝐴𝐼𝐶))    &   (𝜑 → (𝑌 = 𝐵𝑌(𝐾𝐵)𝑋))       (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
 
Theoreminagflat 26799 Any point lies in a flat angle. (Contributed by Thierry Arnoux, 13-Feb-2023.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝐵)    &   (𝜑𝐶𝐵)    &   (𝜑𝑋𝐵)    &   (𝜑𝐵 ∈ (𝐴𝐼𝐶))       (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
 
Theoreminagswap 26800 Swap the order of the half lines delimiting the angle. Theorem 11.24 of [Schwabhauser] p. 101. (Contributed by Thierry Arnoux, 15-Aug-2020.)
𝑃 = (Base‘𝐺)    &   𝐼 = (Itv‘𝐺)    &   𝐾 = (hlG‘𝐺)    &   (𝜑𝑋𝑃)    &   (𝜑𝐴𝑃)    &   (𝜑𝐵𝑃)    &   (𝜑𝐶𝑃)    &   (𝜑𝐺 ∈ TarskiG)    &   (𝜑𝑋(inA‘𝐺)⟨“𝐴𝐵𝐶”⟩)       (𝜑𝑋(inA‘𝐺)⟨“𝐶𝐵𝐴”⟩)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46010
  Copyright terms: Public domain < Previous  Next >