| Metamath
Proof Explorer Theorem List (p. 268 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | relogbreexp 26701 | Power law for the general logarithm for real powers: The logarithm of a positive real number to the power of a real number is equal to the product of the exponent and the logarithm of the base of the power. Property 4 of [Cohen4] p. 361. (Contributed by AV, 9-Jun-2020.) |
| ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ) → (𝐵 logb (𝐶↑𝑐𝐸)) = (𝐸 · (𝐵 logb 𝐶))) | ||
| Theorem | relogbzexp 26702 | Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.) |
| ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝐶 ∈ ℝ+ ∧ 𝑁 ∈ ℤ) → (𝐵 logb (𝐶↑𝑁)) = (𝑁 · (𝐵 logb 𝐶))) | ||
| Theorem | relogbmul 26703 | The logarithm of the product of two positive real numbers is the sum of logarithms. Property 2 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 29-May-2020.) |
| ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · 𝐶)) = ((𝐵 logb 𝐴) + (𝐵 logb 𝐶))) | ||
| Theorem | relogbmulexp 26704 | The logarithm of the product of a positive real and a positive real number to the power of a real number is the sum of the logarithm of the first real number and the scaled logarithm of the second real number. (Contributed by AV, 29-May-2020.) |
| ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ∧ 𝐸 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐶↑𝑐𝐸))) = ((𝐵 logb 𝐴) + (𝐸 · (𝐵 logb 𝐶)))) | ||
| Theorem | relogbdiv 26705 | The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.) |
| ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶))) | ||
| Theorem | relogbexp 26706 | Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of [Cohen4] p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by AV, 9-Jun-2020.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) | ||
| Theorem | nnlogbexp 26707 | Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) | ||
| Theorem | logbrec 26708 | Logarithm of a reciprocal changes sign. See logrec 26689. Particular case of Property 3 of [Cohen4] p. 361. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝐴 ∈ ℝ+) → (𝐵 logb (1 / 𝐴)) = -(𝐵 logb 𝐴)) | ||
| Theorem | logbleb 26709 | The general logarithm function is monotone/increasing. See logleb 26528. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by AV, 31-May-2020.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 ≤ 𝑌 ↔ (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌))) | ||
| Theorem | logblt 26710 | The general logarithm function is strictly monotone/increasing. Property 2 of [Cohen4] p. 377. See logltb 26525. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ+) → (𝑋 < 𝑌 ↔ (𝐵 logb 𝑋) < (𝐵 logb 𝑌))) | ||
| Theorem | relogbcxp 26711 | Identity law for the general logarithm for real numbers. (Contributed by AV, 22-May-2020.) |
| ⊢ ((𝐵 ∈ (ℝ+ ∖ {1}) ∧ 𝑋 ∈ ℝ) → (𝐵 logb (𝐵↑𝑐𝑋)) = 𝑋) | ||
| Theorem | cxplogb 26712 | Identity law for the general logarithm. (Contributed by AV, 22-May-2020.) |
| ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵↑𝑐(𝐵 logb 𝑋)) = 𝑋) | ||
| Theorem | relogbcxpb 26713 | The logarithm is the inverse of the exponentiation. Observation in [Cohen4] p. 348. (Contributed by AV, 11-Jun-2020.) |
| ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ ℝ+ ∧ 𝑌 ∈ ℝ) → ((𝐵 logb 𝑋) = 𝑌 ↔ (𝐵↑𝑐𝑌) = 𝑋)) | ||
| Theorem | logbmpt 26714* | The general logarithm to a fixed base regarded as mapping. (Contributed by AV, 11-Jun-2020.) |
| ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵) = (𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝐵)))) | ||
| Theorem | logbf 26715 | The general logarithm to a fixed base regarded as function. (Contributed by AV, 11-Jun-2020.) |
| ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (curry logb ‘𝐵):(ℂ ∖ {0})⟶ℂ) | ||
| Theorem | logbfval 26716 | The general logarithm of a complex number to a fixed base. (Contributed by AV, 11-Jun-2020.) |
| ⊢ (((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) ∧ 𝑋 ∈ (ℂ ∖ {0})) → ((curry logb ‘𝐵)‘𝑋) = (𝐵 logb 𝑋)) | ||
| Theorem | relogbf 26717 | The general logarithm to a real base greater than 1 regarded as function restricted to the positive integers. Property in [Cohen4] p. 349. (Contributed by AV, 12-Jun-2020.) |
| ⊢ ((𝐵 ∈ ℝ+ ∧ 1 < 𝐵) → ((curry logb ‘𝐵) ↾ ℝ+):ℝ+⟶ℝ) | ||
| Theorem | logblog 26718 | The general logarithm to the base being Euler's constant regarded as function is the natural logarithm. (Contributed by AV, 12-Jun-2020.) |
| ⊢ (curry logb ‘e) = log | ||
| Theorem | logbgt0b 26719 | The logarithm of a positive real number to a real base greater than 1 is positive iff the number is greater than 1. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℝ+ ∧ (𝐵 ∈ ℝ+ ∧ 1 < 𝐵)) → (0 < (𝐵 logb 𝐴) ↔ 1 < 𝐴)) | ||
| Theorem | logbgcd1irr 26720 | The logarithm of an integer greater than 1 to an integer base greater than 1 is an irrational number if the argument and the base are relatively prime. For example, (2 logb 9) ∈ (ℝ ∖ ℚ) (see 2logb9irr 26721). (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((𝑋 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ (ℤ≥‘2) ∧ (𝑋 gcd 𝐵) = 1) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | 2logb9irr 26721 | Example for logbgcd1irr 26720. The logarithm of nine to base two is irrational. (Contributed by AV, 29-Dec-2022.) |
| ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | ||
| Theorem | logbprmirr 26722 | The logarithm of a prime to a different prime base is an irrational number. For example, (2 logb 3) ∈ (ℝ ∖ ℚ) (see 2logb3irr 26723). (Contributed by AV, 31-Dec-2022.) |
| ⊢ ((𝑋 ∈ ℙ ∧ 𝐵 ∈ ℙ ∧ 𝑋 ≠ 𝐵) → (𝐵 logb 𝑋) ∈ (ℝ ∖ ℚ)) | ||
| Theorem | 2logb3irr 26723 | Example for logbprmirr 26722. The logarithm of three to base two is irrational. (Contributed by AV, 31-Dec-2022.) |
| ⊢ (2 logb 3) ∈ (ℝ ∖ ℚ) | ||
| Theorem | 2logb9irrALT 26724 | Alternate proof of 2logb9irr 26721: The logarithm of nine to base two is irrational. (Contributed by AV, 31-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (2 logb 9) ∈ (ℝ ∖ ℚ) | ||
| Theorem | sqrt2cxp2logb9e3 26725 | The square root of two to the power of the logarithm of nine to base two is three. (√‘2) and (2 logb 9) are irrational numbers (see sqrt2irr0 16178 resp. 2logb9irr 26721), satisfying the statement in 2irrexpqALT 26726. (Contributed by AV, 29-Dec-2022.) |
| ⊢ ((√‘2)↑𝑐(2 logb 9)) = 3 | ||
| Theorem | 2irrexpqALT 26726* | Alternate proof of 2irrexpq 26656: There exist irrational numbers 𝑎 and 𝑏 such that (𝑎↑𝑏) is rational. Statement in the Metamath book, section 1.1.5, footnote 27 on page 17, and the "constructive proof" for theorem 1.2 of [Bauer], p. 483. In contrast to 2irrexpq 26656, this is a constructive proof because it is based on two explicitly named irrational numbers (√‘2) and (2 logb 9), see sqrt2irr0 16178, 2logb9irr 26721 and sqrt2cxp2logb9e3 26725. Therefore, this proof is also acceptable/usable in intuitionistic logic. (Contributed by AV, 23-Dec-2022.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ∃𝑎 ∈ (ℝ ∖ ℚ)∃𝑏 ∈ (ℝ ∖ ℚ)(𝑎↑𝑐𝑏) ∈ ℚ | ||
| Theorem | angval 26727* | Define the angle function, which takes two complex numbers, treated as vectors from the origin, and returns the angle between them, in the range ( − π, π]. To convert from the geometry notation, 𝑚𝐴𝐵𝐶, the measure of the angle with legs 𝐴𝐵, 𝐶𝐵 where 𝐶 is more counterclockwise for positive angles, is represented by ((𝐶 − 𝐵)𝐹(𝐴 − 𝐵)). (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐴𝐹𝐵) = (ℑ‘(log‘(𝐵 / 𝐴)))) | ||
| Theorem | angcan 26728* | Cancel a constant multiplier in the angle function. (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐶 · 𝐴)𝐹(𝐶 · 𝐵)) = (𝐴𝐹𝐵)) | ||
| Theorem | angneg 26729* | Cancel a negative sign in the angle function. (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (-𝐴𝐹-𝐵) = (𝐴𝐹𝐵)) | ||
| Theorem | angvald 26730* | The (signed) angle between two vectors is the argument of their quotient. Deduction form of angval 26727. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ≠ 0) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) = (ℑ‘(log‘(𝑌 / 𝑋)))) | ||
| Theorem | angcld 26731* | The (signed) angle between two vectors is in (-π(,]π). Deduction form. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ≠ 0) ⇒ ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (-π(,]π)) | ||
| Theorem | angrteqvd 26732* | Two vectors are at a right angle iff their quotient is purely imaginary. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ≠ 0) ⇒ ⊢ (𝜑 → ((𝑋𝐹𝑌) ∈ {(π / 2), -(π / 2)} ↔ (ℜ‘(𝑌 / 𝑋)) = 0)) | ||
| Theorem | cosangneg2d 26733* | The cosine of the angle between 𝑋 and -𝑌 is the negative of that between 𝑋 and 𝑌. If A, B and C are collinear points, this implies that the cosines of DBA and DBC sum to zero, i.e., that DBA and DBC are supplementary. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ≠ 0) ⇒ ⊢ (𝜑 → (cos‘(𝑋𝐹-𝑌)) = -(cos‘(𝑋𝐹𝑌))) | ||
| Theorem | angrtmuld 26734* | Perpendicularity of two vectors does not change under rescaling the second. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 ∈ ℂ) & ⊢ (𝜑 → 𝑍 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ≠ 0) & ⊢ (𝜑 → 𝑌 ≠ 0) & ⊢ (𝜑 → 𝑍 ≠ 0) & ⊢ (𝜑 → (𝑍 / 𝑌) ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝑋𝐹𝑌) ∈ {(π / 2), -(π / 2)} ↔ (𝑋𝐹𝑍) ∈ {(π / 2), -(π / 2)})) | ||
| Theorem | ang180lem1 26735* | Lemma for ang180 26740. Show that the "revolution number" 𝑁 is an integer, using efeq1 26453 to show that since the product of the three arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 is -1, the sum of the logarithms must be an integer multiple of 2πi away from πi = log(-1). (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) & ⊢ 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ)) | ||
| Theorem | ang180lem2 26736* | Lemma for ang180 26740. Show that the revolution number 𝑁 is strictly between -2 and 1. Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl 26494, but the resulting bound gives only 𝑁 ≤ 1 for the upper bound. The case 𝑁 = 1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 must lie on the negative real axis, which is a contradiction because clearly if 𝐴 is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) & ⊢ 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁 ∧ 𝑁 < 1)) | ||
| Theorem | ang180lem3 26737* | Lemma for ang180 26740. Since ang180lem1 26735 shows that 𝑁 is an integer and ang180lem2 26736 shows that 𝑁 is strictly between -2 and 1, it follows that 𝑁 ∈ {-1, 0}, and these two cases correspond to the two possible values for 𝑇. (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) & ⊢ 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ {-(i · π), (i · π)}) | ||
| Theorem | ang180lem4 26738* | Lemma for ang180 26740. Reduce the statement to one variable. (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((1 − 𝐴)𝐹1) + (𝐴𝐹(𝐴 − 1))) + (1𝐹𝐴)) ∈ {-π, π}) | ||
| Theorem | ang180lem5 26739* | Lemma for ang180 26740: Reduce the statement to two variables. (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ 𝐴 ≠ 𝐵) → ((((𝐴 − 𝐵)𝐹𝐴) + (𝐵𝐹(𝐵 − 𝐴))) + (𝐴𝐹𝐵)) ∈ {-π, π}) | ||
| Theorem | ang180 26740* | The sum of angles 𝑚𝐴𝐵𝐶 + 𝑚𝐵𝐶𝐴 + 𝑚𝐶𝐴𝐵 in a triangle adds up to either π or -π, i.e. 180 degrees. (The sign is due to the two possible orientations of vertex arrangement and our signed notion of angle). This is Metamath 100 proof #27. (Contributed by Mario Carneiro, 23-Sep-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐶)) → ((((𝐶 − 𝐵)𝐹(𝐴 − 𝐵)) + ((𝐴 − 𝐶)𝐹(𝐵 − 𝐶))) + ((𝐵 − 𝐴)𝐹(𝐶 − 𝐴))) ∈ {-π, π}) | ||
| Theorem | lawcoslem1 26741 | Lemma for lawcos 26742. Here we prove the law for a point at the origin and two distinct points U and V, using an expanded version of the signed angle expression on the complex plane. (Contributed by David A. Wheeler, 11-Jun-2015.) |
| ⊢ (𝜑 → 𝑈 ∈ ℂ) & ⊢ (𝜑 → 𝑉 ∈ ℂ) & ⊢ (𝜑 → 𝑈 ≠ 0) & ⊢ (𝜑 → 𝑉 ≠ 0) ⇒ ⊢ (𝜑 → ((abs‘(𝑈 − 𝑉))↑2) = ((((abs‘𝑈)↑2) + ((abs‘𝑉)↑2)) − (2 · (((abs‘𝑈) · (abs‘𝑉)) · ((ℜ‘(𝑈 / 𝑉)) / (abs‘(𝑈 / 𝑉))))))) | ||
| Theorem | lawcos 26742* | Law of cosines (also known as the Al-Kashi theorem or the generalized Pythagorean theorem, or the cosine formula or cosine rule). Given three distinct points A, B, and C, prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 26740), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB, and 𝑂 is the signed angle m/_ BCA on the complex plane. We translate triangle ABC to move C to the origin (C-C), B to U=(B-C), and A to V=(A-C), then use lemma lawcoslem1 26741 to prove this algebraically simpler case. The Metamath convention is to use a signed angle; in this case the sign doesn't matter because we use the cosine of the angle (see cosneg 16074). The Pythagorean theorem pythag 26743 is a special case of the law of cosines. The theorem's expression and approach were suggested by Mario Carneiro. This is Metamath 100 proof #94. (Contributed by David A. Wheeler, 12-Jun-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ 𝑋 = (abs‘(𝐵 − 𝐶)) & ⊢ 𝑌 = (abs‘(𝐴 − 𝐶)) & ⊢ 𝑍 = (abs‘(𝐴 − 𝐵)) & ⊢ 𝑂 = ((𝐵 − 𝐶)𝐹(𝐴 − 𝐶)) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) → (𝑍↑2) = (((𝑋↑2) + (𝑌↑2)) − (2 · ((𝑋 · 𝑌) · (cos‘𝑂))))) | ||
| Theorem | pythag 26743* | Pythagorean theorem. Given three distinct points A, B, and C that form a right triangle (with the right angle at C), prove a relationship between their segment lengths. This theorem is expressed using the complex number plane as a plane, where 𝐹 is the signed angle construct (as used in ang180 26740), 𝑋 is the distance of line segment BC, 𝑌 is the distance of line segment AC, 𝑍 is the distance of line segment AB (the hypotenuse), and 𝑂 is the signed right angle m/_ BCA. We use the law of cosines lawcos 26742 to prove this, along with simple trigonometry facts like coshalfpi 26394 and cosneg 16074. (Contributed by David A. Wheeler, 13-Jun-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ 𝑋 = (abs‘(𝐵 − 𝐶)) & ⊢ 𝑌 = (abs‘(𝐴 − 𝐶)) & ⊢ 𝑍 = (abs‘(𝐴 − 𝐵)) & ⊢ 𝑂 = ((𝐵 − 𝐶)𝐹(𝐴 − 𝐶)) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶) ∧ 𝑂 ∈ {(π / 2), -(π / 2)}) → (𝑍↑2) = ((𝑋↑2) + (𝑌↑2))) | ||
| Theorem | isosctrlem1 26744 | Lemma for isosctr 26747. (Contributed by Saveliy Skresanov, 30-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) ≠ π) | ||
| Theorem | isosctrlem2 26745 | Lemma for isosctr 26747. Corresponds to the case where one vertex is at 0, another at 1 and the third lies on the unit circle. (Contributed by Saveliy Skresanov, 31-Dec-2016.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) = 1 ∧ ¬ 1 = 𝐴) → (ℑ‘(log‘(1 − 𝐴))) = (ℑ‘(log‘(-𝐴 / (1 − 𝐴))))) | ||
| Theorem | isosctrlem3 26746* | Lemma for isosctr 26747. Corresponds to the case where one vertex is at 0. (Contributed by Saveliy Skresanov, 1-Jan-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘𝐴) = (abs‘𝐵)) → (-𝐴𝐹(𝐵 − 𝐴)) = ((𝐴 − 𝐵)𝐹-𝐵)) | ||
| Theorem | isosctr 26747* | Isosceles triangle theorem. This is Metamath 100 proof #65. (Contributed by Saveliy Skresanov, 1-Jan-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) ⇒ ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ 𝐴 ≠ 𝐵) ∧ (abs‘(𝐴 − 𝐶)) = (abs‘(𝐵 − 𝐶))) → ((𝐶 − 𝐴)𝐹(𝐵 − 𝐴)) = ((𝐴 − 𝐵)𝐹(𝐶 − 𝐵))) | ||
| Theorem | ssscongptld 26748* |
If two triangles have equal sides, one angle in one triangle has the
same cosine as the corresponding angle in the other triangle. This is a
partial form of the SSS congruence theorem.
This theorem is proven by using lawcos 26742 on both triangles to express one side in terms of the other two, and then equating these expressions and reducing this algebraically to get an equality of cosines of angles. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐸 ∈ ℂ) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐷 ≠ 𝐸) & ⊢ (𝜑 → 𝐸 ≠ 𝐺) & ⊢ (𝜑 → (abs‘(𝐴 − 𝐵)) = (abs‘(𝐷 − 𝐸))) & ⊢ (𝜑 → (abs‘(𝐵 − 𝐶)) = (abs‘(𝐸 − 𝐺))) & ⊢ (𝜑 → (abs‘(𝐶 − 𝐴)) = (abs‘(𝐺 − 𝐷))) ⇒ ⊢ (𝜑 → (cos‘((𝐴 − 𝐵)𝐹(𝐶 − 𝐵))) = (cos‘((𝐷 − 𝐸)𝐹(𝐺 − 𝐸)))) | ||
| Theorem | affineequiv 26749 | Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐶 − 𝐵) = (𝐷 · (𝐶 − 𝐴)))) | ||
| Theorem | affineequiv2 26750 | Equivalence between two ways of expressing 𝐵 as an affine combination of 𝐴 and 𝐶. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐵 = ((𝐷 · 𝐴) + ((1 − 𝐷) · 𝐶)) ↔ (𝐵 − 𝐴) = ((1 − 𝐷) · (𝐶 − 𝐴)))) | ||
| Theorem | affineequiv3 26751 | Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶. (Contributed by AV, 22-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) | ||
| Theorem | affineequiv4 26752 | Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶. (Contributed by AV, 22-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐴 = ((𝐷 · (𝐶 − 𝐵)) + 𝐵))) | ||
| Theorem | affineequivne 26753 | Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶 if 𝐵 and 𝐶 are not equal. (Contributed by AV, 22-Jan-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐷 = ((𝐴 − 𝐵) / (𝐶 − 𝐵)))) | ||
| Theorem | angpieqvdlem 26754 | Equivalence used in the proof of angpieqvd 26757. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) ⇒ ⊢ (𝜑 → (-((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+ ↔ ((𝐶 − 𝐵) / (𝐶 − 𝐴)) ∈ (0(,)1))) | ||
| Theorem | angpieqvdlem2 26755* | Equivalence used in angpieqvd 26757. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (-((𝐶 − 𝐵) / (𝐴 − 𝐵)) ∈ ℝ+ ↔ ((𝐴 − 𝐵)𝐹(𝐶 − 𝐵)) = π)) | ||
| Theorem | angpined 26756* | If the angle at ABC is π, then 𝐴 is not equal to 𝐶. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐵)𝐹(𝐶 − 𝐵)) = π → 𝐴 ≠ 𝐶)) | ||
| Theorem | angpieqvd 26757* | The angle ABC is π iff 𝐵 is a nontrivial convex combination of 𝐴 and 𝐶, i.e., iff 𝐵 is in the interior of the segment AC. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐵)𝐹(𝐶 − 𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))) | ||
| Theorem | chordthmlem 26758* | If 𝑀 is the midpoint of AB and AQ = BQ, then QMB is a right angle. The proof uses ssscongptld 26748 to observe that, since AMQ and BMQ have equal sides, the angles QMB and QMA must be equal. Since they are supplementary, both must be right angles. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → 𝑄 ≠ 𝑀) ⇒ ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝐵 − 𝑀)) ∈ {(π / 2), -(π / 2)}) | ||
| Theorem | chordthmlem2 26759* | If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then QMP is a right angle. This is proven by reduction to the special case chordthmlem 26758, where P = B, and using angrtmuld 26734 to observe that QMP is right iff QMB is. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) & ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) & ⊢ (𝜑 → 𝑃 ≠ 𝑀) & ⊢ (𝜑 → 𝑄 ≠ 𝑀) ⇒ ⊢ (𝜑 → ((𝑄 − 𝑀)𝐹(𝑃 − 𝑀)) ∈ {(π / 2), -(π / 2)}) | ||
| Theorem | chordthmlem3 26760 | If M is the midpoint of AB, AQ = BQ, and P is on the line AB, then PQ 2 = QM 2 + PM 2 . This follows from chordthmlem2 26759 and the Pythagorean theorem (pythag 26743) in the case where P and Q are unequal to M. If either P or Q equals M, the result is trivial. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) & ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) ⇒ ⊢ (𝜑 → ((abs‘(𝑃 − 𝑄))↑2) = (((abs‘(𝑄 − 𝑀))↑2) + ((abs‘(𝑃 − 𝑀))↑2))) | ||
| Theorem | chordthmlem4 26761 | If P is on the segment AB and M is the midpoint of AB, then PA · PB = BM 2 − PM 2 . If all lengths are reexpressed as fractions of AB, this reduces to the identity 𝑋 · (1 − 𝑋) = (1 / 2) 2 − ((1 / 2) − 𝑋) 2 . (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (0[,]1)) & ⊢ (𝜑 → 𝑀 = ((𝐴 + 𝐵) / 2)) & ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) ⇒ ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = (((abs‘(𝐵 − 𝑀))↑2) − ((abs‘(𝑃 − 𝑀))↑2))) | ||
| Theorem | chordthmlem5 26762 | If P is on the segment AB and AQ = BQ, then PA · PB = BQ 2 − PQ 2 . This follows from two uses of chordthmlem3 26760 to show that PQ 2 = QM 2 + PM 2 and BQ 2 = QM 2 + BM 2 , so BQ 2 − PQ 2 = (QM 2 + BM 2 ) − (QM 2 + PM 2 ) = BM 2 − PM 2 , which equals PA · PB by chordthmlem4 26761. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ (0[,]1)) & ⊢ (𝜑 → 𝑃 = ((𝑋 · 𝐴) + ((1 − 𝑋) · 𝐵))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) ⇒ ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = (((abs‘(𝐵 − 𝑄))↑2) − ((abs‘(𝑃 − 𝑄))↑2))) | ||
| Theorem | chordthm 26763* | The intersecting chords theorem. If points A, B, C, and D lie on a circle (with center Q, say), and the point P is on the interior of the segments AB and CD, then the two products of lengths PA · PB and PC · PD are equal. The Euclidean plane is identified with the complex plane, and the fact that P is on AB and on CD is expressed by the hypothesis that the angles APB and CPD are equal to π. The result is proven by using chordthmlem5 26762 twice to show that PA · PB and PC · PD both equal BQ 2 − PQ 2 . This is similar to the proof of the theorem given in Euclid's Elements, where it is Proposition III.35. This is Metamath 100 proof #55. (Contributed by David Moews, 28-Feb-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝑃) & ⊢ (𝜑 → 𝐵 ≠ 𝑃) & ⊢ (𝜑 → 𝐶 ≠ 𝑃) & ⊢ (𝜑 → 𝐷 ≠ 𝑃) & ⊢ (𝜑 → ((𝐴 − 𝑃)𝐹(𝐵 − 𝑃)) = π) & ⊢ (𝜑 → ((𝐶 − 𝑃)𝐹(𝐷 − 𝑃)) = π) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐵 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐶 − 𝑄))) & ⊢ (𝜑 → (abs‘(𝐴 − 𝑄)) = (abs‘(𝐷 − 𝑄))) ⇒ ⊢ (𝜑 → ((abs‘(𝑃 − 𝐴)) · (abs‘(𝑃 − 𝐵))) = ((abs‘(𝑃 − 𝐶)) · (abs‘(𝑃 − 𝐷)))) | ||
| Theorem | heron 26764* | Heron's formula gives the area of a triangle given only the side lengths. If points A, B, C form a triangle, then the area of the triangle, represented here as (1 / 2) · 𝑋 · 𝑌 · abs(sin𝑂), is equal to the square root of 𝑆 · (𝑆 − 𝑋) · (𝑆 − 𝑌) · (𝑆 − 𝑍), where 𝑆 = (𝑋 + 𝑌 + 𝑍) / 2 is half the perimeter of the triangle. Based on work by Jon Pennant. This is Metamath 100 proof #57. (Contributed by Mario Carneiro, 10-Mar-2019.) |
| ⊢ 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥)))) & ⊢ 𝑋 = (abs‘(𝐵 − 𝐶)) & ⊢ 𝑌 = (abs‘(𝐴 − 𝐶)) & ⊢ 𝑍 = (abs‘(𝐴 − 𝐵)) & ⊢ 𝑂 = ((𝐵 − 𝐶)𝐹(𝐴 − 𝐶)) & ⊢ 𝑆 = (((𝑋 + 𝑌) + 𝑍) / 2) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (((1 / 2) · (𝑋 · 𝑌)) · (abs‘(sin‘𝑂))) = (√‘((𝑆 · (𝑆 − 𝑋)) · ((𝑆 − 𝑌) · (𝑆 − 𝑍))))) | ||
| Theorem | quad2 26765 | The quadratic equation, without specifying the particular branch 𝐷 to the square root. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − 𝐷) / (2 · 𝐴))))) | ||
| Theorem | quad 26766 | The quadratic equation. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐷 = ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) ⇒ ⊢ (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + (√‘𝐷)) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘𝐷)) / (2 · 𝐴))))) | ||
| Theorem | 1cubrlem 26767 | The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ ((-1↑𝑐(2 / 3)) = ((-1 + (i · (√‘3))) / 2) ∧ ((-1↑𝑐(2 / 3))↑2) = ((-1 − (i · (√‘3))) / 2)) | ||
| Theorem | 1cubr 26768 | The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} ⇒ ⊢ (𝐴 ∈ 𝑅 ↔ (𝐴 ∈ ℂ ∧ (𝐴↑3) = 1)) | ||
| Theorem | dcubic1lem 26769 | Lemma for dcubic1 26771 and dcubic2 26770: simplify the cubic equation under the substitution 𝑋 = 𝑈 − 𝑀 / 𝑈. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = (𝐺 − 𝑁)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3))) & ⊢ (𝜑 → 𝑀 = (𝑃 / 3)) & ⊢ (𝜑 → 𝑁 = (𝑄 / 2)) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑈 ∈ ℂ) & ⊢ (𝜑 → 𝑈 ≠ 0) & ⊢ (𝜑 → 𝑋 = (𝑈 − (𝑀 / 𝑈))) ⇒ ⊢ (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ (((𝑈↑3)↑2) + ((𝑄 · (𝑈↑3)) − (𝑀↑3))) = 0)) | ||
| Theorem | dcubic2 26770* | Reverse direction of dcubic 26772. Given a solution 𝑈 to the "substitution" quadratic equation 𝑋 = 𝑈 − 𝑀 / 𝑈, show that 𝑋 is in the desired form. (Contributed by Mario Carneiro, 25-Apr-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = (𝐺 − 𝑁)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3))) & ⊢ (𝜑 → 𝑀 = (𝑃 / 3)) & ⊢ (𝜑 → 𝑁 = (𝑄 / 2)) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑈 ∈ ℂ) & ⊢ (𝜑 → 𝑈 ≠ 0) & ⊢ (𝜑 → 𝑋 = (𝑈 − (𝑀 / 𝑈))) & ⊢ (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇))))) | ||
| Theorem | dcubic1 26771 | Forward direction of dcubic 26772: the claimed formula produces solutions to the cubic equation. (Contributed by Mario Carneiro, 25-Apr-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = (𝐺 − 𝑁)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3))) & ⊢ (𝜑 → 𝑀 = (𝑃 / 3)) & ⊢ (𝜑 → 𝑁 = (𝑄 / 2)) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑋 = (𝑇 − (𝑀 / 𝑇))) ⇒ ⊢ (𝜑 → ((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0) | ||
| Theorem | dcubic 26772* | Solutions to the depressed cubic, a special case of cubic 26775. (The definitions of 𝑀, 𝑁, 𝐺, 𝑇 here differ from mcubic 26773 by scale factors of -9, 54, 54 and -27 respectively, to simplify the algebra and presentation.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = (𝐺 − 𝑁)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3))) & ⊢ (𝜑 → 𝑀 = (𝑃 / 3)) & ⊢ (𝜑 → 𝑁 = (𝑄 / 2)) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇)))))) | ||
| Theorem | mcubic 26773* | Solutions to a monic cubic equation, a special case of cubic 26775. (Contributed by Mario Carneiro, 24-Apr-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = ((𝑁 + 𝐺) / 2)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) − (4 · (𝑀↑3)))) & ⊢ (𝜑 → 𝑀 = ((𝐵↑2) − (3 · 𝐶))) & ⊢ (𝜑 → 𝑁 = (((2 · (𝐵↑3)) − (9 · (𝐵 · 𝐶))) + (;27 · 𝐷))) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → ((((𝑋↑3) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / 3)))) | ||
| Theorem | cubic2 26774* | The solution to the general cubic equation, for arbitrary choices 𝐺 and 𝑇 of the square and cube roots. (Contributed by Mario Carneiro, 23-Apr-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = ((𝑁 + 𝐺) / 2)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) − (4 · (𝑀↑3)))) & ⊢ (𝜑 → 𝑀 = ((𝐵↑2) − (3 · (𝐴 · 𝐶)))) & ⊢ (𝜑 → 𝑁 = (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (;27 · ((𝐴↑2) · 𝐷)))) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))) | ||
| Theorem | cubic 26775* | The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp 4660 to convert the existential quantifier to a triple disjunction. This is Metamath 100 proof #37. (Contributed by Mario Carneiro, 26-Apr-2015.) |
| ⊢ 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 = (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝐺 = ((𝑁↑2) − (4 · (𝑀↑3)))) & ⊢ (𝜑 → 𝑀 = ((𝐵↑2) − (3 · (𝐴 · 𝐶)))) & ⊢ (𝜑 → 𝑁 = (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (;27 · ((𝐴↑2) · 𝐷)))) & ⊢ (𝜑 → 𝑀 ≠ 0) ⇒ ⊢ (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ 𝑅 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)))) | ||
| Theorem | binom4 26776 | Work out a quartic binomial. (You would think that by this point it would be faster to use binom 15755, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) | ||
| Theorem | dquartlem1 26777 | Lemma for dquart 26779. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑀 = ((2 · 𝑆)↑2)) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 ∈ ℂ) & ⊢ (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))) ⇒ ⊢ (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0 ↔ (𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆 − 𝐼)))) | ||
| Theorem | dquartlem2 26778 | Lemma for dquart 26779. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑀 = ((2 · 𝑆)↑2)) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 ∈ ℂ) & ⊢ (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))) = 0) ⇒ ⊢ (𝜑 → ((((𝑀 + 𝐵) / 2)↑2) − (((𝐶↑2) / 4) / 𝑀)) = 𝐷) | ||
| Theorem | dquart 26779 | Solve a depressed quartic equation. To eliminate 𝑆, which is the square root of a solution 𝑀 to the resolvent cubic equation, apply cubic 26775 or one of its variants. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑀 = ((2 · 𝑆)↑2)) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 ∈ ℂ) & ⊢ (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))) = 0) & ⊢ (𝜑 → 𝐽 ∈ ℂ) & ⊢ (𝜑 → (𝐽↑2) = ((-(𝑆↑2) − (𝐵 / 2)) − ((𝐶 / 4) / 𝑆))) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ((𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆 − 𝐼)) ∨ (𝑋 = (𝑆 + 𝐽) ∨ 𝑋 = (𝑆 − 𝐽))))) | ||
| Theorem | quart1cl 26780 | Closure lemmas for quart 26787. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) ⇒ ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) | ||
| Theorem | quart1lem 26781 | Lemma for quart1 26782. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 = (𝑋 + (𝐴 / 4))) ⇒ ⊢ (𝜑 → 𝐷 = ((((𝐴↑4) / ;;256) + (𝑃 · ((𝐴 / 4)↑2))) + ((𝑄 · (𝐴 / 4)) + 𝑅))) | ||
| Theorem | quart1 26782 | Depress a quartic equation. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 = (𝑋 + (𝐴 / 4))) ⇒ ⊢ (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = (((𝑌↑4) + (𝑃 · (𝑌↑2))) + ((𝑄 · 𝑌) + 𝑅))) | ||
| Theorem | quartlem1 26783 | Lemma for quart 26787. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑅 ∈ ℂ) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) ⇒ ⊢ (𝜑 → (𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) ∧ 𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (;27 · -(𝑄↑2))))) | ||
| Theorem | quartlem2 26784 | Closure lemmas for quart 26787. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) ⇒ ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) | ||
| Theorem | quartlem3 26785 | Closure lemmas for quart 26787. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) & ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) & ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) & ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) | ||
| Theorem | quartlem4 26786 | Closure lemmas for quart 26787. (Contributed by Mario Carneiro, 7-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) & ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) & ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) & ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) & ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) ⇒ ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) | ||
| Theorem | quart 26787 | The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull 35137) if all the substitutions are performed. This is Metamath 100 proof #46. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) & ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) & ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) & ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) & ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸 − 𝑆) + 𝐼) ∨ 𝑋 = ((𝐸 − 𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽))))) | ||
| Syntax | casin 26788 | The arcsine function. |
| class arcsin | ||
| Syntax | cacos 26789 | The arccosine function. |
| class arccos | ||
| Syntax | catan 26790 | The arctangent function. |
| class arctan | ||
| Definition | df-asin 26791 | Define the arcsine function. Because sin is not a one-to-one function, the literal inverse ◡sin is not a function. Rather than attempt to find the right domain on which to restrict sin in order to get a total function, we just define it in terms of log, which we already know is total (except at 0). There are branch points at -1 and 1 (at which the function is defined), and branch cuts along the real line not between -1 and 1, which is to say (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) | ||
| Definition | df-acos 26792 | Define the arccosine function. See also remarks for df-asin 26791. Since we define arccos in terms of arcsin, it shares the same branch points and cuts, namely (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) | ||
| Definition | df-atan 26793 | Define the arctangent function. See also remarks for df-asin 26791. Unlike arcsin and arccos, this function is not defined everywhere, because tan(𝑧) ≠ ±i for all 𝑧 ∈ ℂ. For all other 𝑧, there is a formula for arctan(𝑧) in terms of log, and we take that as the definition. Branch points are at ±i; branch cuts are on the pure imaginary axis not between -i and i, which is to say {𝑧 ∈ ℂ ∣ (i · 𝑧) ∈ (-∞, -1) ∪ (1, +∞)}. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) | ||
| Theorem | asinlem 26794 | The argument to the logarithm in df-asin 26791 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) | ||
| Theorem | asinlem2 26795 | The argument to the logarithm in df-asin 26791 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1) | ||
| Theorem | asinlem3a 26796 | Lemma for asinlem3 26797. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
| Theorem | asinlem3 26797 | The argument to the logarithm in df-asin 26791 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
| Theorem | asinf 26798 | Domain and codomain of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arcsin:ℂ⟶ℂ | ||
| Theorem | asincl 26799 | Closure for the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | ||
| Theorem | acosf 26800 | Domain and codoamin of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| ⊢ arccos:ℂ⟶ℂ | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |