MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elina Structured version   Visualization version   GIF version

Theorem elina 10756
Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
elina (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elina
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3509 . 2 (𝐴 ∈ Inacc → 𝐴 ∈ V)
2 fvex 6933 . . . 4 (cf‘𝐴) ∈ V
3 eleq1 2832 . . . 4 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V))
42, 3mpbii 233 . . 3 ((cf‘𝐴) = 𝐴𝐴 ∈ V)
543ad2ant2 1134 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → 𝐴 ∈ V)
6 neeq1 3009 . . . 4 (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅))
7 fveq2 6920 . . . . 5 (𝑦 = 𝐴 → (cf‘𝑦) = (cf‘𝐴))
8 eqeq12 2757 . . . . 5 (((cf‘𝑦) = (cf‘𝐴) ∧ 𝑦 = 𝐴) → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴))
97, 8mpancom 687 . . . 4 (𝑦 = 𝐴 → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴))
10 breq2 5170 . . . . 5 (𝑦 = 𝐴 → (𝒫 𝑥𝑦 ↔ 𝒫 𝑥𝐴))
1110raleqbi1dv 3346 . . . 4 (𝑦 = 𝐴 → (∀𝑥𝑦 𝒫 𝑥𝑦 ↔ ∀𝑥𝐴 𝒫 𝑥𝐴))
126, 9, 113anbi123d 1436 . . 3 (𝑦 = 𝐴 → ((𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥𝑦 𝒫 𝑥𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴)))
13 df-ina 10754 . . 3 Inacc = {𝑦 ∣ (𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥𝑦 𝒫 𝑥𝑦)}
1412, 13elab2g 3696 . 2 (𝐴 ∈ V → (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴)))
151, 5, 14pm5.21nii 378 1 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  c0 4352  𝒫 cpw 4622   class class class wbr 5166  cfv 6573  csdm 9002  cfccf 10006  Inacccina 10752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ina 10754
This theorem is referenced by:  inawina  10759  omina  10760  gchina  10768  inar1  10844  inatsk  10847  tskcard  10850  tskuni  10852  gruina  10887  grur1  10889
  Copyright terms: Public domain W3C validator