![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elina | Structured version Visualization version GIF version |
Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
elina | ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝐴 ∈ Inacc → 𝐴 ∈ V) | |
2 | fvex 6920 | . . . 4 ⊢ (cf‘𝐴) ∈ V | |
3 | eleq1 2827 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V)) | |
4 | 2, 3 | mpbii 233 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ V) |
5 | 4 | 3ad2ant2 1133 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → 𝐴 ∈ V) |
6 | neeq1 3001 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
7 | fveq2 6907 | . . . . 5 ⊢ (𝑦 = 𝐴 → (cf‘𝑦) = (cf‘𝐴)) | |
8 | eqeq12 2752 | . . . . 5 ⊢ (((cf‘𝑦) = (cf‘𝐴) ∧ 𝑦 = 𝐴) → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴)) | |
9 | 7, 8 | mpancom 688 | . . . 4 ⊢ (𝑦 = 𝐴 → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴)) |
10 | breq2 5152 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝒫 𝑥 ≺ 𝑦 ↔ 𝒫 𝑥 ≺ 𝐴)) | |
11 | 10 | raleqbi1dv 3336 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 𝒫 𝑥 ≺ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
12 | 6, 9, 11 | 3anbi123d 1435 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥 ∈ 𝑦 𝒫 𝑥 ≺ 𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴))) |
13 | df-ina 10723 | . . 3 ⊢ Inacc = {𝑦 ∣ (𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥 ∈ 𝑦 𝒫 𝑥 ≺ 𝑦)} | |
14 | 12, 13 | elab2g 3683 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴))) |
15 | 1, 5, 14 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 Vcvv 3478 ∅c0 4339 𝒫 cpw 4605 class class class wbr 5148 ‘cfv 6563 ≺ csdm 8983 cfccf 9975 Inacccina 10721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ina 10723 |
This theorem is referenced by: inawina 10728 omina 10729 gchina 10737 inar1 10813 inatsk 10816 tskcard 10819 tskuni 10821 gruina 10856 grur1 10858 |
Copyright terms: Public domain | W3C validator |