Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elina | Structured version Visualization version GIF version |
Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
elina | ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3452 | . 2 ⊢ (𝐴 ∈ Inacc → 𝐴 ∈ V) | |
2 | fvex 6805 | . . . 4 ⊢ (cf‘𝐴) ∈ V | |
3 | eleq1 2821 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V)) | |
4 | 2, 3 | mpbii 232 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ V) |
5 | 4 | 3ad2ant2 1132 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → 𝐴 ∈ V) |
6 | neeq1 3001 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
7 | fveq2 6792 | . . . . 5 ⊢ (𝑦 = 𝐴 → (cf‘𝑦) = (cf‘𝐴)) | |
8 | eqeq12 2750 | . . . . 5 ⊢ (((cf‘𝑦) = (cf‘𝐴) ∧ 𝑦 = 𝐴) → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴)) | |
9 | 7, 8 | mpancom 684 | . . . 4 ⊢ (𝑦 = 𝐴 → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴)) |
10 | breq2 5081 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝒫 𝑥 ≺ 𝑦 ↔ 𝒫 𝑥 ≺ 𝐴)) | |
11 | 10 | raleqbi1dv 3342 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 𝒫 𝑥 ≺ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
12 | 6, 9, 11 | 3anbi123d 1434 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥 ∈ 𝑦 𝒫 𝑥 ≺ 𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴))) |
13 | df-ina 10469 | . . 3 ⊢ Inacc = {𝑦 ∣ (𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥 ∈ 𝑦 𝒫 𝑥 ≺ 𝑦)} | |
14 | 12, 13 | elab2g 3613 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴))) |
15 | 1, 5, 14 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ∀wral 3059 Vcvv 3434 ∅c0 4259 𝒫 cpw 4536 class class class wbr 5077 ‘cfv 6447 ≺ csdm 8752 cfccf 9723 Inacccina 10467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-ext 2704 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2939 df-ral 3060 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-iota 6399 df-fv 6455 df-ina 10469 |
This theorem is referenced by: inawina 10474 omina 10475 gchina 10483 inar1 10559 inatsk 10562 tskcard 10565 tskuni 10567 gruina 10602 grur1 10604 |
Copyright terms: Public domain | W3C validator |