MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elina Structured version   Visualization version   GIF version

Theorem elina 10471
Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
elina (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elina
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3452 . 2 (𝐴 ∈ Inacc → 𝐴 ∈ V)
2 fvex 6805 . . . 4 (cf‘𝐴) ∈ V
3 eleq1 2821 . . . 4 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V))
42, 3mpbii 232 . . 3 ((cf‘𝐴) = 𝐴𝐴 ∈ V)
543ad2ant2 1132 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → 𝐴 ∈ V)
6 neeq1 3001 . . . 4 (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅))
7 fveq2 6792 . . . . 5 (𝑦 = 𝐴 → (cf‘𝑦) = (cf‘𝐴))
8 eqeq12 2750 . . . . 5 (((cf‘𝑦) = (cf‘𝐴) ∧ 𝑦 = 𝐴) → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴))
97, 8mpancom 684 . . . 4 (𝑦 = 𝐴 → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴))
10 breq2 5081 . . . . 5 (𝑦 = 𝐴 → (𝒫 𝑥𝑦 ↔ 𝒫 𝑥𝐴))
1110raleqbi1dv 3342 . . . 4 (𝑦 = 𝐴 → (∀𝑥𝑦 𝒫 𝑥𝑦 ↔ ∀𝑥𝐴 𝒫 𝑥𝐴))
126, 9, 113anbi123d 1434 . . 3 (𝑦 = 𝐴 → ((𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥𝑦 𝒫 𝑥𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴)))
13 df-ina 10469 . . 3 Inacc = {𝑦 ∣ (𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥𝑦 𝒫 𝑥𝑦)}
1412, 13elab2g 3613 . 2 (𝐴 ∈ V → (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴)))
151, 5, 14pm5.21nii 379 1 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1085   = wceq 1537  wcel 2101  wne 2938  wral 3059  Vcvv 3434  c0 4259  𝒫 cpw 4536   class class class wbr 5077  cfv 6447  csdm 8752  cfccf 9723  Inacccina 10467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-ext 2704  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2939  df-ral 3060  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-iota 6399  df-fv 6455  df-ina 10469
This theorem is referenced by:  inawina  10474  omina  10475  gchina  10483  inar1  10559  inatsk  10562  tskcard  10565  tskuni  10567  gruina  10602  grur1  10604
  Copyright terms: Public domain W3C validator