MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elina Structured version   Visualization version   GIF version

Theorem elina 10701
Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
elina (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elina
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3480 . 2 (𝐴 ∈ Inacc → 𝐴 ∈ V)
2 fvex 6889 . . . 4 (cf‘𝐴) ∈ V
3 eleq1 2822 . . . 4 ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V))
42, 3mpbii 233 . . 3 ((cf‘𝐴) = 𝐴𝐴 ∈ V)
543ad2ant2 1134 . 2 ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴) → 𝐴 ∈ V)
6 neeq1 2994 . . . 4 (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅))
7 fveq2 6876 . . . . 5 (𝑦 = 𝐴 → (cf‘𝑦) = (cf‘𝐴))
8 eqeq12 2752 . . . . 5 (((cf‘𝑦) = (cf‘𝐴) ∧ 𝑦 = 𝐴) → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴))
97, 8mpancom 688 . . . 4 (𝑦 = 𝐴 → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴))
10 breq2 5123 . . . . 5 (𝑦 = 𝐴 → (𝒫 𝑥𝑦 ↔ 𝒫 𝑥𝐴))
1110raleqbi1dv 3317 . . . 4 (𝑦 = 𝐴 → (∀𝑥𝑦 𝒫 𝑥𝑦 ↔ ∀𝑥𝐴 𝒫 𝑥𝐴))
126, 9, 113anbi123d 1438 . . 3 (𝑦 = 𝐴 → ((𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥𝑦 𝒫 𝑥𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴)))
13 df-ina 10699 . . 3 Inacc = {𝑦 ∣ (𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥𝑦 𝒫 𝑥𝑦)}
1412, 13elab2g 3659 . 2 (𝐴 ∈ V → (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴)))
151, 5, 14pm5.21nii 378 1 (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥𝐴 𝒫 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  Vcvv 3459  c0 4308  𝒫 cpw 4575   class class class wbr 5119  cfv 6531  csdm 8958  cfccf 9951  Inacccina 10697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-ina 10699
This theorem is referenced by:  inawina  10704  omina  10705  gchina  10713  inar1  10789  inatsk  10792  tskcard  10795  tskuni  10797  gruina  10832  grur1  10834
  Copyright terms: Public domain W3C validator