Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elina | Structured version Visualization version GIF version |
Description: Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
Ref | Expression |
---|---|
elina | ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝐴 ∈ Inacc → 𝐴 ∈ V) | |
2 | fvex 6769 | . . . 4 ⊢ (cf‘𝐴) ∈ V | |
3 | eleq1 2826 | . . . 4 ⊢ ((cf‘𝐴) = 𝐴 → ((cf‘𝐴) ∈ V ↔ 𝐴 ∈ V)) | |
4 | 2, 3 | mpbii 232 | . . 3 ⊢ ((cf‘𝐴) = 𝐴 → 𝐴 ∈ V) |
5 | 4 | 3ad2ant2 1132 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴) → 𝐴 ∈ V) |
6 | neeq1 3005 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅)) | |
7 | fveq2 6756 | . . . . 5 ⊢ (𝑦 = 𝐴 → (cf‘𝑦) = (cf‘𝐴)) | |
8 | eqeq12 2755 | . . . . 5 ⊢ (((cf‘𝑦) = (cf‘𝐴) ∧ 𝑦 = 𝐴) → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴)) | |
9 | 7, 8 | mpancom 684 | . . . 4 ⊢ (𝑦 = 𝐴 → ((cf‘𝑦) = 𝑦 ↔ (cf‘𝐴) = 𝐴)) |
10 | breq2 5074 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝒫 𝑥 ≺ 𝑦 ↔ 𝒫 𝑥 ≺ 𝐴)) | |
11 | 10 | raleqbi1dv 3331 | . . . 4 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 𝒫 𝑥 ≺ 𝑦 ↔ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
12 | 6, 9, 11 | 3anbi123d 1434 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥 ∈ 𝑦 𝒫 𝑥 ≺ 𝑦) ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴))) |
13 | df-ina 10372 | . . 3 ⊢ Inacc = {𝑦 ∣ (𝑦 ≠ ∅ ∧ (cf‘𝑦) = 𝑦 ∧ ∀𝑥 ∈ 𝑦 𝒫 𝑥 ≺ 𝑦)} | |
14 | 12, 13 | elab2g 3604 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴))) |
15 | 1, 5, 14 | pm5.21nii 379 | 1 ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 Vcvv 3422 ∅c0 4253 𝒫 cpw 4530 class class class wbr 5070 ‘cfv 6418 ≺ csdm 8690 cfccf 9626 Inacccina 10370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ina 10372 |
This theorem is referenced by: inawina 10377 omina 10378 gchina 10386 inar1 10462 inatsk 10465 tskcard 10468 tskuni 10470 gruina 10505 grur1 10507 |
Copyright terms: Public domain | W3C validator |