| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-inv | Structured version Visualization version GIF version | ||
| Description: The inverse relation in a category. Given arrows 𝑓:𝑋⟶𝑌 and 𝑔:𝑌⟶𝑋, we say 𝑔Inv𝑓, that is, 𝑔 is an inverse of 𝑓, if 𝑔 is a section of 𝑓 and 𝑓 is a section of 𝑔. Definition 3.8 of [Adamek] p. 28. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-inv | ⊢ Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cinv 17789 | . 2 class Inv | |
| 2 | vc | . . 3 setvar 𝑐 | |
| 3 | ccat 17707 | . . 3 class Cat | |
| 4 | vx | . . . 4 setvar 𝑥 | |
| 5 | vy | . . . 4 setvar 𝑦 | |
| 6 | 2 | cv 1539 | . . . . 5 class 𝑐 |
| 7 | cbs 17247 | . . . . 5 class Base | |
| 8 | 6, 7 | cfv 6561 | . . . 4 class (Base‘𝑐) |
| 9 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 10 | 5 | cv 1539 | . . . . . 6 class 𝑦 |
| 11 | csect 17788 | . . . . . . 7 class Sect | |
| 12 | 6, 11 | cfv 6561 | . . . . . 6 class (Sect‘𝑐) |
| 13 | 9, 10, 12 | co 7431 | . . . . 5 class (𝑥(Sect‘𝑐)𝑦) |
| 14 | 10, 9, 12 | co 7431 | . . . . . 6 class (𝑦(Sect‘𝑐)𝑥) |
| 15 | 14 | ccnv 5684 | . . . . 5 class ◡(𝑦(Sect‘𝑐)𝑥) |
| 16 | 13, 15 | cin 3950 | . . . 4 class ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)) |
| 17 | 4, 5, 8, 8, 16 | cmpo 7433 | . . 3 class (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥))) |
| 18 | 2, 3, 17 | cmpt 5225 | . 2 class (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) |
| 19 | 1, 18 | wceq 1540 | 1 wff Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: invffval 17802 isofn 17819 |
| Copyright terms: Public domain | W3C validator |