MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofn Structured version   Visualization version   GIF version

Theorem isofn 17836
Description: The function value of the function returning the isomorphisms of a category is a function over the square product of the base set of the category. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
isofn (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))

Proof of Theorem isofn
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7941 . . . . . 6 (𝑥 ∈ V → dom 𝑥 ∈ V)
21adantl 481 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑥 ∈ V) → dom 𝑥 ∈ V)
32ralrimiva 3152 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ V dom 𝑥 ∈ V)
4 eqid 2740 . . . . 5 (𝑥 ∈ V ↦ dom 𝑥) = (𝑥 ∈ V ↦ dom 𝑥)
54fnmpt 6720 . . . 4 (∀𝑥 ∈ V dom 𝑥 ∈ V → (𝑥 ∈ V ↦ dom 𝑥) Fn V)
63, 5syl 17 . . 3 (𝐶 ∈ Cat → (𝑥 ∈ V ↦ dom 𝑥) Fn V)
7 ovex 7481 . . . . . . . 8 (𝑥(Sect‘𝐶)𝑦) ∈ V
87inex1 5335 . . . . . . 7 ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V
98a1i 11 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V)
109ralrimivva 3208 . . . . 5 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V)
11 eqid 2740 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
1211fnmpo 8110 . . . . 5 (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶)))
1310, 12syl 17 . . . 4 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶)))
14 df-inv 17809 . . . . . 6 Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
15 fveq2 6920 . . . . . . 7 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
16 fveq2 6920 . . . . . . . . 9 (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶))
1716oveqd 7465 . . . . . . . 8 (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥(Sect‘𝐶)𝑦))
1816oveqd 7465 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦(Sect‘𝐶)𝑥))
1918cnveqd 5900 . . . . . . . 8 (𝑐 = 𝐶(𝑦(Sect‘𝑐)𝑥) = (𝑦(Sect‘𝐶)𝑥))
2017, 19ineq12d 4242 . . . . . . 7 (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥)) = ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
2115, 15, 20mpoeq123dv 7525 . . . . . 6 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
22 id 22 . . . . . 6 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
23 fvex 6933 . . . . . . . 8 (Base‘𝐶) ∈ V
2423, 23pm3.2i 470 . . . . . . 7 ((Base‘𝐶) ∈ V ∧ (Base‘𝐶) ∈ V)
25 mpoexga 8118 . . . . . . 7 (((Base‘𝐶) ∈ V ∧ (Base‘𝐶) ∈ V) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) ∈ V)
2624, 25mp1i 13 . . . . . 6 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) ∈ V)
2714, 21, 22, 26fvmptd3 7052 . . . . 5 (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
2827fneq1d 6672 . . . 4 (𝐶 ∈ Cat → ((Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶))))
2913, 28mpbird 257 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
30 ssv 4033 . . . 4 ran (Inv‘𝐶) ⊆ V
3130a1i 11 . . 3 (𝐶 ∈ Cat → ran (Inv‘𝐶) ⊆ V)
32 fnco 6697 . . 3 (((𝑥 ∈ V ↦ dom 𝑥) Fn V ∧ (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Inv‘𝐶) ⊆ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))
336, 29, 31, 32syl3anc 1371 . 2 (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))
34 isofval 17818 . . 3 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
3534fneq1d 6672 . 2 (𝐶 ∈ Cat → ((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶))))
3633, 35mpbird 257 1 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cin 3975  wss 3976  cmpt 5249   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  ccom 5704   Fn wfn 6568  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  Catccat 17722  Sectcsect 17805  Invcinv 17806  Isociso 17807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-inv 17809  df-iso 17810
This theorem is referenced by:  brcic  17859  ciclcl  17863  cicrcl  17864  cicer  17867
  Copyright terms: Public domain W3C validator