MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofn Structured version   Visualization version   GIF version

Theorem isofn 17744
Description: The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
isofn (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))

Proof of Theorem isofn
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7880 . . . . . 6 (𝑥 ∈ V → dom 𝑥 ∈ V)
21adantl 481 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑥 ∈ V) → dom 𝑥 ∈ V)
32ralrimiva 3126 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ V dom 𝑥 ∈ V)
4 eqid 2730 . . . . 5 (𝑥 ∈ V ↦ dom 𝑥) = (𝑥 ∈ V ↦ dom 𝑥)
54fnmpt 6661 . . . 4 (∀𝑥 ∈ V dom 𝑥 ∈ V → (𝑥 ∈ V ↦ dom 𝑥) Fn V)
63, 5syl 17 . . 3 (𝐶 ∈ Cat → (𝑥 ∈ V ↦ dom 𝑥) Fn V)
7 ovex 7423 . . . . . . . 8 (𝑥(Sect‘𝐶)𝑦) ∈ V
87inex1 5275 . . . . . . 7 ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V
98a1i 11 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V)
109ralrimivva 3181 . . . . 5 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V)
11 eqid 2730 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
1211fnmpo 8051 . . . . 5 (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶)))
1310, 12syl 17 . . . 4 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶)))
14 df-inv 17717 . . . . . 6 Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
15 fveq2 6861 . . . . . . 7 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
16 fveq2 6861 . . . . . . . . 9 (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶))
1716oveqd 7407 . . . . . . . 8 (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥(Sect‘𝐶)𝑦))
1816oveqd 7407 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦(Sect‘𝐶)𝑥))
1918cnveqd 5842 . . . . . . . 8 (𝑐 = 𝐶(𝑦(Sect‘𝑐)𝑥) = (𝑦(Sect‘𝐶)𝑥))
2017, 19ineq12d 4187 . . . . . . 7 (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥)) = ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
2115, 15, 20mpoeq123dv 7467 . . . . . 6 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
22 id 22 . . . . . 6 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
23 fvex 6874 . . . . . . . 8 (Base‘𝐶) ∈ V
2423, 23pm3.2i 470 . . . . . . 7 ((Base‘𝐶) ∈ V ∧ (Base‘𝐶) ∈ V)
25 mpoexga 8059 . . . . . . 7 (((Base‘𝐶) ∈ V ∧ (Base‘𝐶) ∈ V) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) ∈ V)
2624, 25mp1i 13 . . . . . 6 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) ∈ V)
2714, 21, 22, 26fvmptd3 6994 . . . . 5 (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
2827fneq1d 6614 . . . 4 (𝐶 ∈ Cat → ((Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶))))
2913, 28mpbird 257 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
30 ssv 3974 . . . 4 ran (Inv‘𝐶) ⊆ V
3130a1i 11 . . 3 (𝐶 ∈ Cat → ran (Inv‘𝐶) ⊆ V)
32 fnco 6639 . . 3 (((𝑥 ∈ V ↦ dom 𝑥) Fn V ∧ (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Inv‘𝐶) ⊆ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))
336, 29, 31, 32syl3anc 1373 . 2 (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))
34 isofval 17726 . . 3 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
3534fneq1d 6614 . 2 (𝐶 ∈ Cat → ((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶))))
3633, 35mpbird 257 1 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cin 3916  wss 3917  cmpt 5191   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  ccom 5645   Fn wfn 6509  cfv 6514  (class class class)co 7390  cmpo 7392  Basecbs 17186  Catccat 17632  Sectcsect 17713  Invcinv 17714  Isociso 17715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-inv 17717  df-iso 17718
This theorem is referenced by:  brcic  17767  ciclcl  17771  cicrcl  17772  cicer  17775  isofval2  49025  isopropdlem  49033  relcic  49038  upeu4  49189
  Copyright terms: Public domain W3C validator