MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofn Structured version   Visualization version   GIF version

Theorem isofn 17618
Description: The function value of the function returning the isomorphisms of a category is a function over the square product of the base set of the category. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
isofn (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))

Proof of Theorem isofn
Dummy variables 𝑐 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7832 . . . . . 6 (𝑥 ∈ V → dom 𝑥 ∈ V)
21adantl 482 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑥 ∈ V) → dom 𝑥 ∈ V)
32ralrimiva 3141 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ V dom 𝑥 ∈ V)
4 eqid 2737 . . . . 5 (𝑥 ∈ V ↦ dom 𝑥) = (𝑥 ∈ V ↦ dom 𝑥)
54fnmpt 6638 . . . 4 (∀𝑥 ∈ V dom 𝑥 ∈ V → (𝑥 ∈ V ↦ dom 𝑥) Fn V)
63, 5syl 17 . . 3 (𝐶 ∈ Cat → (𝑥 ∈ V ↦ dom 𝑥) Fn V)
7 ovex 7384 . . . . . . . 8 (𝑥(Sect‘𝐶)𝑦) ∈ V
87inex1 5272 . . . . . . 7 ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V
98a1i 11 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V)
109ralrimivva 3195 . . . . 5 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V)
11 eqid 2737 . . . . . 6 (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
1211fnmpo 7993 . . . . 5 (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)) ∈ V → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶)))
1310, 12syl 17 . . . 4 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶)))
14 df-inv 17591 . . . . . 6 Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
15 fveq2 6839 . . . . . . 7 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
16 fveq2 6839 . . . . . . . . 9 (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶))
1716oveqd 7368 . . . . . . . 8 (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥(Sect‘𝐶)𝑦))
1816oveqd 7368 . . . . . . . . 9 (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦(Sect‘𝐶)𝑥))
1918cnveqd 5829 . . . . . . . 8 (𝑐 = 𝐶(𝑦(Sect‘𝑐)𝑥) = (𝑦(Sect‘𝐶)𝑥))
2017, 19ineq12d 4171 . . . . . . 7 (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥)) = ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥)))
2115, 15, 20mpoeq123dv 7426 . . . . . 6 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
22 id 22 . . . . . 6 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
23 fvex 6852 . . . . . . . 8 (Base‘𝐶) ∈ V
2423, 23pm3.2i 471 . . . . . . 7 ((Base‘𝐶) ∈ V ∧ (Base‘𝐶) ∈ V)
25 mpoexga 8002 . . . . . . 7 (((Base‘𝐶) ∈ V ∧ (Base‘𝐶) ∈ V) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) ∈ V)
2624, 25mp1i 13 . . . . . 6 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) ∈ V)
2714, 21, 22, 26fvmptd3 6968 . . . . 5 (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))))
2827fneq1d 6592 . . . 4 (𝐶 ∈ Cat → ((Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ (𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶))))
2913, 28mpbird 256 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
30 ssv 3966 . . . 4 ran (Inv‘𝐶) ⊆ V
3130a1i 11 . . 3 (𝐶 ∈ Cat → ran (Inv‘𝐶) ⊆ V)
32 fnco 6615 . . 3 (((𝑥 ∈ V ↦ dom 𝑥) Fn V ∧ (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Inv‘𝐶) ⊆ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))
336, 29, 31, 32syl3anc 1371 . 2 (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))
34 isofval 17600 . . 3 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
3534fneq1d 6592 . 2 (𝐶 ∈ Cat → ((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶))))
3633, 35mpbird 256 1 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3062  Vcvv 3443  cin 3907  wss 3908  cmpt 5186   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  ccom 5635   Fn wfn 6488  cfv 6493  (class class class)co 7351  cmpo 7353  Basecbs 17043  Catccat 17504  Sectcsect 17587  Invcinv 17588  Isociso 17589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7354  df-oprab 7355  df-mpo 7356  df-1st 7913  df-2nd 7914  df-inv 17591  df-iso 17592
This theorem is referenced by:  brcic  17641  ciclcl  17645  cicrcl  17646  cicer  17649
  Copyright terms: Public domain W3C validator