Step | Hyp | Ref
| Expression |
1 | | dmexg 7750 |
. . . . . 6
⊢ (𝑥 ∈ V → dom 𝑥 ∈ V) |
2 | 1 | adantl 482 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ V) → dom 𝑥 ∈ V) |
3 | 2 | ralrimiva 3103 |
. . . 4
⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ V dom 𝑥 ∈ V) |
4 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ V ↦ dom 𝑥) = (𝑥 ∈ V ↦ dom 𝑥) |
5 | 4 | fnmpt 6573 |
. . . 4
⊢
(∀𝑥 ∈ V
dom 𝑥 ∈ V →
(𝑥 ∈ V ↦ dom
𝑥) Fn V) |
6 | 3, 5 | syl 17 |
. . 3
⊢ (𝐶 ∈ Cat → (𝑥 ∈ V ↦ dom 𝑥) Fn V) |
7 | | ovex 7308 |
. . . . . . . 8
⊢ (𝑥(Sect‘𝐶)𝑦) ∈ V |
8 | 7 | inex1 5241 |
. . . . . . 7
⊢ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V |
9 | 8 | a1i 11 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V) |
10 | 9 | ralrimivva 3123 |
. . . . 5
⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V) |
11 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) |
12 | 11 | fnmpo 7909 |
. . . . 5
⊢
(∀𝑥 ∈
(Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)) ∈ V → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶))) |
13 | 10, 12 | syl 17 |
. . . 4
⊢ (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶))) |
14 | | df-inv 17460 |
. . . . . 6
⊢ Inv =
(𝑐 ∈ Cat ↦
(𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) |
15 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) |
16 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶)) |
17 | 16 | oveqd 7292 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥(Sect‘𝐶)𝑦)) |
18 | 16 | oveqd 7292 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦(Sect‘𝐶)𝑥)) |
19 | 18 | cnveqd 5784 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → ◡(𝑦(Sect‘𝑐)𝑥) = ◡(𝑦(Sect‘𝐶)𝑥)) |
20 | 17, 19 | ineq12d 4147 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)) = ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) |
21 | 15, 15, 20 | mpoeq123dv 7350 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))) |
22 | | id 22 |
. . . . . 6
⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) |
23 | | fvex 6787 |
. . . . . . . 8
⊢
(Base‘𝐶)
∈ V |
24 | 23, 23 | pm3.2i 471 |
. . . . . . 7
⊢
((Base‘𝐶)
∈ V ∧ (Base‘𝐶) ∈ V) |
25 | | mpoexga 7918 |
. . . . . . 7
⊢
(((Base‘𝐶)
∈ V ∧ (Base‘𝐶) ∈ V) → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) ∈ V) |
26 | 24, 25 | mp1i 13 |
. . . . . 6
⊢ (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) ∈ V) |
27 | 14, 21, 22, 26 | fvmptd3 6898 |
. . . . 5
⊢ (𝐶 ∈ Cat →
(Inv‘𝐶) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥)))) |
28 | 27 | fneq1d 6526 |
. . . 4
⊢ (𝐶 ∈ Cat →
((Inv‘𝐶) Fn
((Base‘𝐶) ×
(Base‘𝐶)) ↔
(𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ ((𝑥(Sect‘𝐶)𝑦) ∩ ◡(𝑦(Sect‘𝐶)𝑥))) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
29 | 13, 28 | mpbird 256 |
. . 3
⊢ (𝐶 ∈ Cat →
(Inv‘𝐶) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |
30 | | ssv 3945 |
. . . 4
⊢ ran
(Inv‘𝐶) ⊆
V |
31 | 30 | a1i 11 |
. . 3
⊢ (𝐶 ∈ Cat → ran
(Inv‘𝐶) ⊆
V) |
32 | | fnco 6549 |
. . 3
⊢ (((𝑥 ∈ V ↦ dom 𝑥) Fn V ∧ (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Inv‘𝐶) ⊆ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶))) |
33 | 6, 29, 31, 32 | syl3anc 1370 |
. 2
⊢ (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶))) |
34 | | isofval 17469 |
. . 3
⊢ (𝐶 ∈ Cat →
(Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
35 | 34 | fneq1d 6526 |
. 2
⊢ (𝐶 ∈ Cat →
((Iso‘𝐶) Fn
((Base‘𝐶) ×
(Base‘𝐶)) ↔
((𝑥 ∈ V ↦ dom
𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
36 | 33, 35 | mpbird 256 |
1
⊢ (𝐶 ∈ Cat →
(Iso‘𝐶) Fn
((Base‘𝐶) ×
(Base‘𝐶))) |