Detailed syntax breakdown of Definition df-sect
Step | Hyp | Ref
| Expression |
1 | | csect 17373 |
. 2
class
Sect |
2 | | vc |
. . 3
setvar 𝑐 |
3 | | ccat 17290 |
. . 3
class
Cat |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | | vy |
. . . 4
setvar 𝑦 |
6 | 2 | cv 1538 |
. . . . 5
class 𝑐 |
7 | | cbs 16840 |
. . . . 5
class
Base |
8 | 6, 7 | cfv 6418 |
. . . 4
class
(Base‘𝑐) |
9 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
10 | 9 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
11 | 4 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
12 | 5 | cv 1538 |
. . . . . . . . . 10
class 𝑦 |
13 | | vh |
. . . . . . . . . . 11
setvar ℎ |
14 | 13 | cv 1538 |
. . . . . . . . . 10
class ℎ |
15 | 11, 12, 14 | co 7255 |
. . . . . . . . 9
class (𝑥ℎ𝑦) |
16 | 10, 15 | wcel 2108 |
. . . . . . . 8
wff 𝑓 ∈ (𝑥ℎ𝑦) |
17 | | vg |
. . . . . . . . . 10
setvar 𝑔 |
18 | 17 | cv 1538 |
. . . . . . . . 9
class 𝑔 |
19 | 12, 11, 14 | co 7255 |
. . . . . . . . 9
class (𝑦ℎ𝑥) |
20 | 18, 19 | wcel 2108 |
. . . . . . . 8
wff 𝑔 ∈ (𝑦ℎ𝑥) |
21 | 16, 20 | wa 395 |
. . . . . . 7
wff (𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) |
22 | 11, 12 | cop 4564 |
. . . . . . . . . 10
class
〈𝑥, 𝑦〉 |
23 | | cco 16900 |
. . . . . . . . . . 11
class
comp |
24 | 6, 23 | cfv 6418 |
. . . . . . . . . 10
class
(comp‘𝑐) |
25 | 22, 11, 24 | co 7255 |
. . . . . . . . 9
class
(〈𝑥, 𝑦〉(comp‘𝑐)𝑥) |
26 | 18, 10, 25 | co 7255 |
. . . . . . . 8
class (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) |
27 | | ccid 17291 |
. . . . . . . . . 10
class
Id |
28 | 6, 27 | cfv 6418 |
. . . . . . . . 9
class
(Id‘𝑐) |
29 | 11, 28 | cfv 6418 |
. . . . . . . 8
class
((Id‘𝑐)‘𝑥) |
30 | 26, 29 | wceq 1539 |
. . . . . . 7
wff (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥) |
31 | 21, 30 | wa 395 |
. . . . . 6
wff ((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) |
32 | | chom 16899 |
. . . . . . 7
class
Hom |
33 | 6, 32 | cfv 6418 |
. . . . . 6
class (Hom
‘𝑐) |
34 | 31, 13, 33 | wsbc 3711 |
. . . . 5
wff
[(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) |
35 | 34, 9, 17 | copab 5132 |
. . . 4
class
{〈𝑓, 𝑔〉 ∣ [(Hom
‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))} |
36 | 4, 5, 8, 8, 35 | cmpo 7257 |
. . 3
class (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}) |
37 | 2, 3, 36 | cmpt 5153 |
. 2
class (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))})) |
38 | 1, 37 | wceq 1539 |
1
wff Sect =
(𝑐 ∈ Cat ↦
(𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))})) |