MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invffval Structured version   Visualization version   GIF version

Theorem invffval 17662
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invffval.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
invffval (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝐶,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem invffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 invfval.n . 2 𝑁 = (Inv‘𝐶)
2 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6822 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 invfval.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2784 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fveq2 6822 . . . . . . . 8 (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶))
7 invffval.s . . . . . . . 8 𝑆 = (Sect‘𝐶)
86, 7eqtr4di 2784 . . . . . . 7 (𝑐 = 𝐶 → (Sect‘𝑐) = 𝑆)
98oveqd 7363 . . . . . 6 (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥𝑆𝑦))
108oveqd 7363 . . . . . . 7 (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥))
1110cnveqd 5815 . . . . . 6 (𝑐 = 𝐶(𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥))
129, 11ineq12d 4171 . . . . 5 (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥)) = ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥)))
135, 5, 12mpoeq123dv 7421 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
14 df-inv 17652 . . . 4 Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
154fvexi 6836 . . . . 5 𝐵 ∈ V
1615, 15mpoex 8011 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))) ∈ V
1713, 14, 16fvmpt 6929 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
182, 17syl 17 . 2 (𝜑 → (Inv‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
191, 18eqtrid 2778 1 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cin 3901  ccnv 5615  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117  Catccat 17567  Sectcsect 17648  Invcinv 17649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-inv 17652
This theorem is referenced by:  invfval  17663  isoval  17669  invrcl2  49056  invpropdlem  49069
  Copyright terms: Public domain W3C validator