MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invffval Structured version   Visualization version   GIF version

Theorem invffval 17819
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invfval.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
invffval (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐶,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem invffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 invfval.n . 2 𝑁 = (Inv‘𝐶)
2 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6920 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 invfval.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2798 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fveq2 6920 . . . . . . . 8 (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶))
7 invfval.s . . . . . . . 8 𝑆 = (Sect‘𝐶)
86, 7eqtr4di 2798 . . . . . . 7 (𝑐 = 𝐶 → (Sect‘𝑐) = 𝑆)
98oveqd 7465 . . . . . 6 (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥𝑆𝑦))
108oveqd 7465 . . . . . . 7 (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥))
1110cnveqd 5900 . . . . . 6 (𝑐 = 𝐶(𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥))
129, 11ineq12d 4242 . . . . 5 (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥)) = ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥)))
135, 5, 12mpoeq123dv 7525 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
14 df-inv 17809 . . . 4 Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
154fvexi 6934 . . . . 5 𝐵 ∈ V
1615, 15mpoex 8120 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))) ∈ V
1713, 14, 16fvmpt 7029 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
182, 17syl 17 . 2 (𝜑 → (Inv‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
191, 18eqtrid 2792 1 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cin 3975  ccnv 5699  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  Catccat 17722  Sectcsect 17805  Invcinv 17806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-inv 17809
This theorem is referenced by:  invfval  17820  isoval  17826
  Copyright terms: Public domain W3C validator