MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invffval Structured version   Visualization version   GIF version

Theorem invffval 17701
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐡 = (Baseβ€˜πΆ)
invfval.n 𝑁 = (Invβ€˜πΆ)
invfval.c (πœ‘ β†’ 𝐢 ∈ Cat)
invfval.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
invfval.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
invfval.s 𝑆 = (Sectβ€˜πΆ)
Assertion
Ref Expression
invffval (πœ‘ β†’ 𝑁 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ((π‘₯𝑆𝑦) ∩ β—‘(𝑦𝑆π‘₯))))
Distinct variable groups:   π‘₯,𝑦,𝐡   πœ‘,π‘₯,𝑦   π‘₯,𝑋,𝑦   π‘₯,π‘Œ,𝑦   π‘₯,𝐢,𝑦   π‘₯,𝑆,𝑦
Allowed substitution hints:   𝑁(π‘₯,𝑦)

Proof of Theorem invffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 invfval.n . 2 𝑁 = (Invβ€˜πΆ)
2 invfval.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
3 fveq2 6888 . . . . . 6 (𝑐 = 𝐢 β†’ (Baseβ€˜π‘) = (Baseβ€˜πΆ))
4 invfval.b . . . . . 6 𝐡 = (Baseβ€˜πΆ)
53, 4eqtr4di 2790 . . . . 5 (𝑐 = 𝐢 β†’ (Baseβ€˜π‘) = 𝐡)
6 fveq2 6888 . . . . . . . 8 (𝑐 = 𝐢 β†’ (Sectβ€˜π‘) = (Sectβ€˜πΆ))
7 invfval.s . . . . . . . 8 𝑆 = (Sectβ€˜πΆ)
86, 7eqtr4di 2790 . . . . . . 7 (𝑐 = 𝐢 β†’ (Sectβ€˜π‘) = 𝑆)
98oveqd 7422 . . . . . 6 (𝑐 = 𝐢 β†’ (π‘₯(Sectβ€˜π‘)𝑦) = (π‘₯𝑆𝑦))
108oveqd 7422 . . . . . . 7 (𝑐 = 𝐢 β†’ (𝑦(Sectβ€˜π‘)π‘₯) = (𝑦𝑆π‘₯))
1110cnveqd 5873 . . . . . 6 (𝑐 = 𝐢 β†’ β—‘(𝑦(Sectβ€˜π‘)π‘₯) = β—‘(𝑦𝑆π‘₯))
129, 11ineq12d 4212 . . . . 5 (𝑐 = 𝐢 β†’ ((π‘₯(Sectβ€˜π‘)𝑦) ∩ β—‘(𝑦(Sectβ€˜π‘)π‘₯)) = ((π‘₯𝑆𝑦) ∩ β—‘(𝑦𝑆π‘₯)))
135, 5, 12mpoeq123dv 7480 . . . 4 (𝑐 = 𝐢 β†’ (π‘₯ ∈ (Baseβ€˜π‘), 𝑦 ∈ (Baseβ€˜π‘) ↦ ((π‘₯(Sectβ€˜π‘)𝑦) ∩ β—‘(𝑦(Sectβ€˜π‘)π‘₯))) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ((π‘₯𝑆𝑦) ∩ β—‘(𝑦𝑆π‘₯))))
14 df-inv 17691 . . . 4 Inv = (𝑐 ∈ Cat ↦ (π‘₯ ∈ (Baseβ€˜π‘), 𝑦 ∈ (Baseβ€˜π‘) ↦ ((π‘₯(Sectβ€˜π‘)𝑦) ∩ β—‘(𝑦(Sectβ€˜π‘)π‘₯))))
154fvexi 6902 . . . . 5 𝐡 ∈ V
1615, 15mpoex 8062 . . . 4 (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ((π‘₯𝑆𝑦) ∩ β—‘(𝑦𝑆π‘₯))) ∈ V
1713, 14, 16fvmpt 6995 . . 3 (𝐢 ∈ Cat β†’ (Invβ€˜πΆ) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ((π‘₯𝑆𝑦) ∩ β—‘(𝑦𝑆π‘₯))))
182, 17syl 17 . 2 (πœ‘ β†’ (Invβ€˜πΆ) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ((π‘₯𝑆𝑦) ∩ β—‘(𝑦𝑆π‘₯))))
191, 18eqtrid 2784 1 (πœ‘ β†’ 𝑁 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ((π‘₯𝑆𝑦) ∩ β—‘(𝑦𝑆π‘₯))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   ∩ cin 3946  β—‘ccnv 5674  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Basecbs 17140  Catccat 17604  Sectcsect 17687  Invcinv 17688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-inv 17691
This theorem is referenced by:  invfval  17702  isoval  17708
  Copyright terms: Public domain W3C validator