| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invffval | Structured version Visualization version GIF version | ||
| Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invffval.s | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| invffval | ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.n | . 2 ⊢ 𝑁 = (Inv‘𝐶) | |
| 2 | invfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | fveq2 6822 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
| 4 | invfval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 3, 4 | eqtr4di 2784 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
| 6 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶)) | |
| 7 | invffval.s | . . . . . . . 8 ⊢ 𝑆 = (Sect‘𝐶) | |
| 8 | 6, 7 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Sect‘𝑐) = 𝑆) |
| 9 | 8 | oveqd 7363 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥𝑆𝑦)) |
| 10 | 8 | oveqd 7363 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥)) |
| 11 | 10 | cnveqd 5815 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ◡(𝑦(Sect‘𝑐)𝑥) = ◡(𝑦𝑆𝑥)) |
| 12 | 9, 11 | ineq12d 4171 | . . . . 5 ⊢ (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)) = ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥))) |
| 13 | 5, 5, 12 | mpoeq123dv 7421 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| 14 | df-inv 17652 | . . . 4 ⊢ Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) | |
| 15 | 4 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 16 | 15, 15 | mpoex 8011 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥))) ∈ V |
| 17 | 13, 14, 16 | fvmpt 6929 | . . 3 ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝜑 → (Inv‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| 19 | 1, 18 | eqtrid 2778 | 1 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 ◡ccnv 5615 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17117 Catccat 17567 Sectcsect 17648 Invcinv 17649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-inv 17652 |
| This theorem is referenced by: invfval 17663 isoval 17669 invrcl2 49056 invpropdlem 49069 |
| Copyright terms: Public domain | W3C validator |