MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invffval Structured version   Visualization version   GIF version

Theorem invffval 17470
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invfval.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
invffval (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐶,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝑁(𝑥,𝑦)

Proof of Theorem invffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 invfval.n . 2 𝑁 = (Inv‘𝐶)
2 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6774 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 invfval.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2796 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fveq2 6774 . . . . . . . 8 (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶))
7 invfval.s . . . . . . . 8 𝑆 = (Sect‘𝐶)
86, 7eqtr4di 2796 . . . . . . 7 (𝑐 = 𝐶 → (Sect‘𝑐) = 𝑆)
98oveqd 7292 . . . . . 6 (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥𝑆𝑦))
108oveqd 7292 . . . . . . 7 (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥))
1110cnveqd 5784 . . . . . 6 (𝑐 = 𝐶(𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥))
129, 11ineq12d 4147 . . . . 5 (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥)) = ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥)))
135, 5, 12mpoeq123dv 7350 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
14 df-inv 17460 . . . 4 Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
154fvexi 6788 . . . . 5 𝐵 ∈ V
1615, 15mpoex 7920 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))) ∈ V
1713, 14, 16fvmpt 6875 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
182, 17syl 17 . 2 (𝜑 → (Inv‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
191, 18eqtrid 2790 1 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cin 3886  ccnv 5588  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  Catccat 17373  Sectcsect 17456  Invcinv 17457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-inv 17460
This theorem is referenced by:  invfval  17471  isoval  17477
  Copyright terms: Public domain W3C validator