![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invffval | Structured version Visualization version GIF version |
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | β’ π΅ = (BaseβπΆ) |
invfval.n | β’ π = (InvβπΆ) |
invfval.c | β’ (π β πΆ β Cat) |
invfval.x | β’ (π β π β π΅) |
invfval.y | β’ (π β π β π΅) |
invfval.s | β’ π = (SectβπΆ) |
Ref | Expression |
---|---|
invffval | β’ (π β π = (π₯ β π΅, π¦ β π΅ β¦ ((π₯ππ¦) β© β‘(π¦ππ₯)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.n | . 2 β’ π = (InvβπΆ) | |
2 | invfval.c | . . 3 β’ (π β πΆ β Cat) | |
3 | fveq2 6888 | . . . . . 6 β’ (π = πΆ β (Baseβπ) = (BaseβπΆ)) | |
4 | invfval.b | . . . . . 6 β’ π΅ = (BaseβπΆ) | |
5 | 3, 4 | eqtr4di 2790 | . . . . 5 β’ (π = πΆ β (Baseβπ) = π΅) |
6 | fveq2 6888 | . . . . . . . 8 β’ (π = πΆ β (Sectβπ) = (SectβπΆ)) | |
7 | invfval.s | . . . . . . . 8 β’ π = (SectβπΆ) | |
8 | 6, 7 | eqtr4di 2790 | . . . . . . 7 β’ (π = πΆ β (Sectβπ) = π) |
9 | 8 | oveqd 7422 | . . . . . 6 β’ (π = πΆ β (π₯(Sectβπ)π¦) = (π₯ππ¦)) |
10 | 8 | oveqd 7422 | . . . . . . 7 β’ (π = πΆ β (π¦(Sectβπ)π₯) = (π¦ππ₯)) |
11 | 10 | cnveqd 5873 | . . . . . 6 β’ (π = πΆ β β‘(π¦(Sectβπ)π₯) = β‘(π¦ππ₯)) |
12 | 9, 11 | ineq12d 4212 | . . . . 5 β’ (π = πΆ β ((π₯(Sectβπ)π¦) β© β‘(π¦(Sectβπ)π₯)) = ((π₯ππ¦) β© β‘(π¦ππ₯))) |
13 | 5, 5, 12 | mpoeq123dv 7480 | . . . 4 β’ (π = πΆ β (π₯ β (Baseβπ), π¦ β (Baseβπ) β¦ ((π₯(Sectβπ)π¦) β© β‘(π¦(Sectβπ)π₯))) = (π₯ β π΅, π¦ β π΅ β¦ ((π₯ππ¦) β© β‘(π¦ππ₯)))) |
14 | df-inv 17691 | . . . 4 β’ Inv = (π β Cat β¦ (π₯ β (Baseβπ), π¦ β (Baseβπ) β¦ ((π₯(Sectβπ)π¦) β© β‘(π¦(Sectβπ)π₯)))) | |
15 | 4 | fvexi 6902 | . . . . 5 β’ π΅ β V |
16 | 15, 15 | mpoex 8062 | . . . 4 β’ (π₯ β π΅, π¦ β π΅ β¦ ((π₯ππ¦) β© β‘(π¦ππ₯))) β V |
17 | 13, 14, 16 | fvmpt 6995 | . . 3 β’ (πΆ β Cat β (InvβπΆ) = (π₯ β π΅, π¦ β π΅ β¦ ((π₯ππ¦) β© β‘(π¦ππ₯)))) |
18 | 2, 17 | syl 17 | . 2 β’ (π β (InvβπΆ) = (π₯ β π΅, π¦ β π΅ β¦ ((π₯ππ¦) β© β‘(π¦ππ₯)))) |
19 | 1, 18 | eqtrid 2784 | 1 β’ (π β π = (π₯ β π΅, π¦ β π΅ β¦ ((π₯ππ¦) β© β‘(π¦ππ₯)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β© cin 3946 β‘ccnv 5674 βcfv 6540 (class class class)co 7405 β cmpo 7407 Basecbs 17140 Catccat 17604 Sectcsect 17687 Invcinv 17688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-inv 17691 |
This theorem is referenced by: invfval 17702 isoval 17708 |
Copyright terms: Public domain | W3C validator |