![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invffval | Structured version Visualization version GIF version |
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invfval.s | ⊢ 𝑆 = (Sect‘𝐶) |
Ref | Expression |
---|---|
invffval | ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.n | . 2 ⊢ 𝑁 = (Inv‘𝐶) | |
2 | invfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | fveq2 6499 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
4 | invfval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | syl6eqr 2832 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
6 | fveq2 6499 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶)) | |
7 | invfval.s | . . . . . . . 8 ⊢ 𝑆 = (Sect‘𝐶) | |
8 | 6, 7 | syl6eqr 2832 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Sect‘𝑐) = 𝑆) |
9 | 8 | oveqd 6993 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥𝑆𝑦)) |
10 | 8 | oveqd 6993 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥)) |
11 | 10 | cnveqd 5596 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ◡(𝑦(Sect‘𝑐)𝑥) = ◡(𝑦𝑆𝑥)) |
12 | 9, 11 | ineq12d 4077 | . . . . 5 ⊢ (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)) = ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥))) |
13 | 5, 5, 12 | mpoeq123dv 7047 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
14 | df-inv 16876 | . . . 4 ⊢ Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) | |
15 | 4 | fvexi 6513 | . . . . 5 ⊢ 𝐵 ∈ V |
16 | 15, 15 | mpoex 7585 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥))) ∈ V |
17 | 13, 14, 16 | fvmpt 6595 | . . 3 ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
18 | 2, 17 | syl 17 | . 2 ⊢ (𝜑 → (Inv‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
19 | 1, 18 | syl5eq 2826 | 1 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ∩ cin 3828 ◡ccnv 5406 ‘cfv 6188 (class class class)co 6976 ∈ cmpo 6978 Basecbs 16339 Catccat 16793 Sectcsect 16872 Invcinv 16873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-1st 7501 df-2nd 7502 df-inv 16876 |
This theorem is referenced by: invfval 16887 isoval 16893 |
Copyright terms: Public domain | W3C validator |