| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invffval | Structured version Visualization version GIF version | ||
| Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invffval.s | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| invffval | ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.n | . 2 ⊢ 𝑁 = (Inv‘𝐶) | |
| 2 | invfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | fveq2 6886 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) | |
| 4 | invfval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 3, 4 | eqtr4di 2787 | . . . . 5 ⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
| 6 | fveq2 6886 | . . . . . . . 8 ⊢ (𝑐 = 𝐶 → (Sect‘𝑐) = (Sect‘𝐶)) | |
| 7 | invffval.s | . . . . . . . 8 ⊢ 𝑆 = (Sect‘𝐶) | |
| 8 | 6, 7 | eqtr4di 2787 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (Sect‘𝑐) = 𝑆) |
| 9 | 8 | oveqd 7430 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑥(Sect‘𝑐)𝑦) = (𝑥𝑆𝑦)) |
| 10 | 8 | oveqd 7430 | . . . . . . 7 ⊢ (𝑐 = 𝐶 → (𝑦(Sect‘𝑐)𝑥) = (𝑦𝑆𝑥)) |
| 11 | 10 | cnveqd 5866 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ◡(𝑦(Sect‘𝑐)𝑥) = ◡(𝑦𝑆𝑥)) |
| 12 | 9, 11 | ineq12d 4201 | . . . . 5 ⊢ (𝑐 = 𝐶 → ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)) = ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥))) |
| 13 | 5, 5, 12 | mpoeq123dv 7490 | . . . 4 ⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| 14 | df-inv 17764 | . . . 4 ⊢ Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) | |
| 15 | 4 | fvexi 6900 | . . . . 5 ⊢ 𝐵 ∈ V |
| 16 | 15, 15 | mpoex 8086 | . . . 4 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥))) ∈ V |
| 17 | 13, 14, 16 | fvmpt 6996 | . . 3 ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| 18 | 2, 17 | syl 17 | . 2 ⊢ (𝜑 → (Inv‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| 19 | 1, 18 | eqtrid 2781 | 1 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ◡ccnv 5664 ‘cfv 6541 (class class class)co 7413 ∈ cmpo 7415 Basecbs 17230 Catccat 17679 Sectcsect 17760 Invcinv 17761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-inv 17764 |
| This theorem is referenced by: invfval 17775 isoval 17781 invpropdlem 48912 |
| Copyright terms: Public domain | W3C validator |