![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-iso | Structured version Visualization version GIF version |
Description: Function returning the isomorphisms of the category π. Definition 3.8 of [Adamek] p. 28, and definition in [Lang] p. 54. (Contributed by FL, 9-Jun-2014.) (Revised by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
df-iso | β’ Iso = (π β Cat β¦ ((π₯ β V β¦ dom π₯) β (Invβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ciso 17689 | . 2 class Iso | |
2 | vc | . . 3 setvar π | |
3 | ccat 17604 | . . 3 class Cat | |
4 | vx | . . . . 5 setvar π₯ | |
5 | cvv 3474 | . . . . 5 class V | |
6 | 4 | cv 1540 | . . . . . 6 class π₯ |
7 | 6 | cdm 5675 | . . . . 5 class dom π₯ |
8 | 4, 5, 7 | cmpt 5230 | . . . 4 class (π₯ β V β¦ dom π₯) |
9 | 2 | cv 1540 | . . . . 5 class π |
10 | cinv 17688 | . . . . 5 class Inv | |
11 | 9, 10 | cfv 6540 | . . . 4 class (Invβπ) |
12 | 8, 11 | ccom 5679 | . . 3 class ((π₯ β V β¦ dom π₯) β (Invβπ)) |
13 | 2, 3, 12 | cmpt 5230 | . 2 class (π β Cat β¦ ((π₯ β V β¦ dom π₯) β (Invβπ))) |
14 | 1, 13 | wceq 1541 | 1 wff Iso = (π β Cat β¦ ((π₯ β V β¦ dom π₯) β (Invβπ))) |
Colors of variables: wff setvar class |
This definition is referenced by: isofval 17700 |
Copyright terms: Public domain | W3C validator |