| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-iso | Structured version Visualization version GIF version | ||
| Description: Function returning the isomorphisms of the category 𝑐. Definition 3.8 of [Adamek] p. 28, and definition in [Lang] p. 54. (Contributed by FL, 9-Jun-2014.) (Revised by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-iso | ⊢ Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ciso 17790 | . 2 class Iso | |
| 2 | vc | . . 3 setvar 𝑐 | |
| 3 | ccat 17707 | . . 3 class Cat | |
| 4 | vx | . . . . 5 setvar 𝑥 | |
| 5 | cvv 3480 | . . . . 5 class V | |
| 6 | 4 | cv 1539 | . . . . . 6 class 𝑥 |
| 7 | 6 | cdm 5685 | . . . . 5 class dom 𝑥 |
| 8 | 4, 5, 7 | cmpt 5225 | . . . 4 class (𝑥 ∈ V ↦ dom 𝑥) |
| 9 | 2 | cv 1539 | . . . . 5 class 𝑐 |
| 10 | cinv 17789 | . . . . 5 class Inv | |
| 11 | 9, 10 | cfv 6561 | . . . 4 class (Inv‘𝑐) |
| 12 | 8, 11 | ccom 5689 | . . 3 class ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) |
| 13 | 2, 3, 12 | cmpt 5225 | . 2 class (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) |
| 14 | 1, 13 | wceq 1540 | 1 wff Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: isofval 17801 |
| Copyright terms: Public domain | W3C validator |