MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffval Structured version   Visualization version   GIF version

Theorem ipffval 20765
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipffval · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Distinct variable groups:   𝑥,𝑦, ,   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem ipffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ipffval.3 . 2 · = (·if𝑊)
2 fveq2 6756 . . . . . 6 (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊))
3 ipffval.1 . . . . . 6 𝑉 = (Base‘𝑊)
42, 3eqtr4di 2797 . . . . 5 (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉)
5 fveq2 6756 . . . . . . 7 (𝑔 = 𝑊 → (·𝑖𝑔) = (·𝑖𝑊))
6 ipffval.2 . . . . . . 7 , = (·𝑖𝑊)
75, 6eqtr4di 2797 . . . . . 6 (𝑔 = 𝑊 → (·𝑖𝑔) = , )
87oveqd 7272 . . . . 5 (𝑔 = 𝑊 → (𝑥(·𝑖𝑔)𝑦) = (𝑥 , 𝑦))
94, 4, 8mpoeq123dv 7328 . . . 4 (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
10 df-ipf 20744 . . . 4 ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
113fvexi 6770 . . . . 5 𝑉 ∈ V
126fvexi 6770 . . . . . . 7 , ∈ V
1312rnex 7733 . . . . . 6 ran , ∈ V
14 p0ex 5302 . . . . . 6 {∅} ∈ V
1513, 14unex 7574 . . . . 5 (ran , ∪ {∅}) ∈ V
16 df-ov 7258 . . . . . . 7 (𝑥 , 𝑦) = ( , ‘⟨𝑥, 𝑦⟩)
17 fvrn0 6784 . . . . . . 7 ( , ‘⟨𝑥, 𝑦⟩) ∈ (ran , ∪ {∅})
1816, 17eqeltri 2835 . . . . . 6 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
1918rgen2w 3076 . . . . 5 𝑥𝑉𝑦𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
2011, 11, 15, 19mpoexw 7892 . . . 4 (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) ∈ V
219, 10, 20fvmpt 6857 . . 3 (𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
22 fvprc 6748 . . . 4 𝑊 ∈ V → (·if𝑊) = ∅)
23 fvprc 6748 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
243, 23eqtrid 2790 . . . . . 6 𝑊 ∈ V → 𝑉 = ∅)
2524olcd 870 . . . . 5 𝑊 ∈ V → (𝑉 = ∅ ∨ 𝑉 = ∅))
26 0mpo0 7336 . . . . 5 ((𝑉 = ∅ ∨ 𝑉 = ∅) → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = ∅)
2725, 26syl 17 . . . 4 𝑊 ∈ V → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = ∅)
2822, 27eqtr4d 2781 . . 3 𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
2921, 28pm2.61i 182 . 2 (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
301, 29eqtri 2766 1 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  c0 4253  {csn 4558  cop 4564  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840  ·𝑖cip 16893  ·ifcipf 20742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-ipf 20744
This theorem is referenced by:  ipfval  20766  ipfeq  20767  ipffn  20768  phlipf  20769  phssip  20775
  Copyright terms: Public domain W3C validator