MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffval Structured version   Visualization version   GIF version

Theorem ipffval 21583
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipffval · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Distinct variable groups:   𝑥,𝑦, ,   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem ipffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ipffval.3 . 2 · = (·if𝑊)
2 fveq2 6822 . . . . . 6 (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊))
3 ipffval.1 . . . . . 6 𝑉 = (Base‘𝑊)
42, 3eqtr4di 2784 . . . . 5 (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉)
5 fveq2 6822 . . . . . . 7 (𝑔 = 𝑊 → (·𝑖𝑔) = (·𝑖𝑊))
6 ipffval.2 . . . . . . 7 , = (·𝑖𝑊)
75, 6eqtr4di 2784 . . . . . 6 (𝑔 = 𝑊 → (·𝑖𝑔) = , )
87oveqd 7363 . . . . 5 (𝑔 = 𝑊 → (𝑥(·𝑖𝑔)𝑦) = (𝑥 , 𝑦))
94, 4, 8mpoeq123dv 7421 . . . 4 (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
10 df-ipf 21562 . . . 4 ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
113fvexi 6836 . . . . 5 𝑉 ∈ V
126fvexi 6836 . . . . . . 7 , ∈ V
1312rnex 7840 . . . . . 6 ran , ∈ V
14 p0ex 5322 . . . . . 6 {∅} ∈ V
1513, 14unex 7677 . . . . 5 (ran , ∪ {∅}) ∈ V
16 df-ov 7349 . . . . . . 7 (𝑥 , 𝑦) = ( , ‘⟨𝑥, 𝑦⟩)
17 fvrn0 6850 . . . . . . 7 ( , ‘⟨𝑥, 𝑦⟩) ∈ (ran , ∪ {∅})
1816, 17eqeltri 2827 . . . . . 6 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
1918rgen2w 3052 . . . . 5 𝑥𝑉𝑦𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
2011, 11, 15, 19mpoexw 8010 . . . 4 (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) ∈ V
219, 10, 20fvmpt 6929 . . 3 (𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
22 fvprc 6814 . . . 4 𝑊 ∈ V → (·if𝑊) = ∅)
23 fvprc 6814 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
243, 23eqtrid 2778 . . . . . 6 𝑊 ∈ V → 𝑉 = ∅)
2524olcd 874 . . . . 5 𝑊 ∈ V → (𝑉 = ∅ ∨ 𝑉 = ∅))
26 0mpo0 7429 . . . . 5 ((𝑉 = ∅ ∨ 𝑉 = ∅) → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = ∅)
2725, 26syl 17 . . . 4 𝑊 ∈ V → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = ∅)
2822, 27eqtr4d 2769 . . 3 𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
2921, 28pm2.61i 182 . 2 (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
301, 29eqtri 2754 1 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  cun 3900  c0 4283  {csn 4576  cop 4582  ran crn 5617  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117  ·𝑖cip 17163  ·ifcipf 21560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-ipf 21562
This theorem is referenced by:  ipfval  21584  ipfeq  21585  ipffn  21586  phlipf  21587  phssip  21593
  Copyright terms: Public domain W3C validator