| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipffval | Structured version Visualization version GIF version | ||
| Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
| Ref | Expression |
|---|---|
| ipffval.1 | ⊢ 𝑉 = (Base‘𝑊) |
| ipffval.2 | ⊢ , = (·𝑖‘𝑊) |
| ipffval.3 | ⊢ · = (·if‘𝑊) |
| Ref | Expression |
|---|---|
| ipffval | ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipffval.3 | . 2 ⊢ · = (·if‘𝑊) | |
| 2 | fveq2 6826 | . . . . . 6 ⊢ (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊)) | |
| 3 | ipffval.1 | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . 5 ⊢ (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉) |
| 5 | fveq2 6826 | . . . . . . 7 ⊢ (𝑔 = 𝑊 → (·𝑖‘𝑔) = (·𝑖‘𝑊)) | |
| 6 | ipffval.2 | . . . . . . 7 ⊢ , = (·𝑖‘𝑊) | |
| 7 | 5, 6 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑔 = 𝑊 → (·𝑖‘𝑔) = , ) |
| 8 | 7 | oveqd 7370 | . . . . 5 ⊢ (𝑔 = 𝑊 → (𝑥(·𝑖‘𝑔)𝑦) = (𝑥 , 𝑦)) |
| 9 | 4, 4, 8 | mpoeq123dv 7428 | . . . 4 ⊢ (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
| 10 | df-ipf 21552 | . . . 4 ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) | |
| 11 | 3 | fvexi 6840 | . . . . 5 ⊢ 𝑉 ∈ V |
| 12 | 6 | fvexi 6840 | . . . . . . 7 ⊢ , ∈ V |
| 13 | 12 | rnex 7850 | . . . . . 6 ⊢ ran , ∈ V |
| 14 | p0ex 5326 | . . . . . 6 ⊢ {∅} ∈ V | |
| 15 | 13, 14 | unex 7684 | . . . . 5 ⊢ (ran , ∪ {∅}) ∈ V |
| 16 | df-ov 7356 | . . . . . . 7 ⊢ (𝑥 , 𝑦) = ( , ‘〈𝑥, 𝑦〉) | |
| 17 | fvrn0 6854 | . . . . . . 7 ⊢ ( , ‘〈𝑥, 𝑦〉) ∈ (ran , ∪ {∅}) | |
| 18 | 16, 17 | eqeltri 2824 | . . . . . 6 ⊢ (𝑥 , 𝑦) ∈ (ran , ∪ {∅}) |
| 19 | 18 | rgen2w 3049 | . . . . 5 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅}) |
| 20 | 11, 11, 15, 19 | mpoexw 8020 | . . . 4 ⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ V |
| 21 | 9, 10, 20 | fvmpt 6934 | . . 3 ⊢ (𝑊 ∈ V → (·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
| 22 | fvprc 6818 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (·if‘𝑊) = ∅) | |
| 23 | fvprc 6818 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = ∅) | |
| 24 | 3, 23 | eqtrid 2776 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → 𝑉 = ∅) |
| 25 | 24 | olcd 874 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝑉 = ∅ ∨ 𝑉 = ∅)) |
| 26 | 0mpo0 7436 | . . . . 5 ⊢ ((𝑉 = ∅ ∨ 𝑉 = ∅) → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = ∅) | |
| 27 | 25, 26 | syl 17 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = ∅) |
| 28 | 22, 27 | eqtr4d 2767 | . . 3 ⊢ (¬ 𝑊 ∈ V → (·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
| 29 | 21, 28 | pm2.61i 182 | . 2 ⊢ (·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
| 30 | 1, 29 | eqtri 2752 | 1 ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∪ cun 3903 ∅c0 4286 {csn 4579 〈cop 4585 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 ·𝑖cip 17184 ·ifcipf 21550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-ipf 21552 |
| This theorem is referenced by: ipfval 21574 ipfeq 21575 ipffn 21576 phlipf 21577 phssip 21583 |
| Copyright terms: Public domain | W3C validator |