![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipffval | Structured version Visualization version GIF version |
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
ipffval.1 | ⊢ 𝑉 = (Base‘𝑊) |
ipffval.2 | ⊢ , = (·𝑖‘𝑊) |
ipffval.3 | ⊢ · = (·if‘𝑊) |
Ref | Expression |
---|---|
ipffval | ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipffval.3 | . 2 ⊢ · = (·if‘𝑊) | |
2 | fveq2 6881 | . . . . . 6 ⊢ (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊)) | |
3 | ipffval.1 | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
4 | 2, 3 | eqtr4di 2791 | . . . . 5 ⊢ (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉) |
5 | fveq2 6881 | . . . . . . 7 ⊢ (𝑔 = 𝑊 → (·𝑖‘𝑔) = (·𝑖‘𝑊)) | |
6 | ipffval.2 | . . . . . . 7 ⊢ , = (·𝑖‘𝑊) | |
7 | 5, 6 | eqtr4di 2791 | . . . . . 6 ⊢ (𝑔 = 𝑊 → (·𝑖‘𝑔) = , ) |
8 | 7 | oveqd 7413 | . . . . 5 ⊢ (𝑔 = 𝑊 → (𝑥(·𝑖‘𝑔)𝑦) = (𝑥 , 𝑦)) |
9 | 4, 4, 8 | mpoeq123dv 7471 | . . . 4 ⊢ (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
10 | df-ipf 21153 | . . . 4 ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) | |
11 | 3 | fvexi 6895 | . . . . 5 ⊢ 𝑉 ∈ V |
12 | 6 | fvexi 6895 | . . . . . . 7 ⊢ , ∈ V |
13 | 12 | rnex 7890 | . . . . . 6 ⊢ ran , ∈ V |
14 | p0ex 5378 | . . . . . 6 ⊢ {∅} ∈ V | |
15 | 13, 14 | unex 7720 | . . . . 5 ⊢ (ran , ∪ {∅}) ∈ V |
16 | df-ov 7399 | . . . . . . 7 ⊢ (𝑥 , 𝑦) = ( , ‘〈𝑥, 𝑦〉) | |
17 | fvrn0 6911 | . . . . . . 7 ⊢ ( , ‘〈𝑥, 𝑦〉) ∈ (ran , ∪ {∅}) | |
18 | 16, 17 | eqeltri 2830 | . . . . . 6 ⊢ (𝑥 , 𝑦) ∈ (ran , ∪ {∅}) |
19 | 18 | rgen2w 3067 | . . . . 5 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅}) |
20 | 11, 11, 15, 19 | mpoexw 8052 | . . . 4 ⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ V |
21 | 9, 10, 20 | fvmpt 6987 | . . 3 ⊢ (𝑊 ∈ V → (·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
22 | fvprc 6873 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (·if‘𝑊) = ∅) | |
23 | fvprc 6873 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = ∅) | |
24 | 3, 23 | eqtrid 2785 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → 𝑉 = ∅) |
25 | 24 | olcd 873 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝑉 = ∅ ∨ 𝑉 = ∅)) |
26 | 0mpo0 7479 | . . . . 5 ⊢ ((𝑉 = ∅ ∨ 𝑉 = ∅) → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = ∅) | |
27 | 25, 26 | syl 17 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = ∅) |
28 | 22, 27 | eqtr4d 2776 | . . 3 ⊢ (¬ 𝑊 ∈ V → (·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
29 | 21, 28 | pm2.61i 182 | . 2 ⊢ (·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
30 | 1, 29 | eqtri 2761 | 1 ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 846 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∪ cun 3944 ∅c0 4320 {csn 4624 〈cop 4630 ran crn 5673 ‘cfv 6535 (class class class)co 7396 ∈ cmpo 7398 Basecbs 17131 ·𝑖cip 17189 ·ifcipf 21151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-fv 6543 df-ov 7399 df-oprab 7400 df-mpo 7401 df-1st 7962 df-2nd 7963 df-ipf 21153 |
This theorem is referenced by: ipfval 21175 ipfeq 21176 ipffn 21177 phlipf 21178 phssip 21184 |
Copyright terms: Public domain | W3C validator |