Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ipffval | Structured version Visualization version GIF version |
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.) |
Ref | Expression |
---|---|
ipffval.1 | ⊢ 𝑉 = (Base‘𝑊) |
ipffval.2 | ⊢ , = (·𝑖‘𝑊) |
ipffval.3 | ⊢ · = (·if‘𝑊) |
Ref | Expression |
---|---|
ipffval | ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ipffval.3 | . 2 ⊢ · = (·if‘𝑊) | |
2 | fveq2 6663 | . . . . . 6 ⊢ (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊)) | |
3 | ipffval.1 | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
4 | 2, 3 | eqtr4di 2811 | . . . . 5 ⊢ (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉) |
5 | fveq2 6663 | . . . . . . 7 ⊢ (𝑔 = 𝑊 → (·𝑖‘𝑔) = (·𝑖‘𝑊)) | |
6 | ipffval.2 | . . . . . . 7 ⊢ , = (·𝑖‘𝑊) | |
7 | 5, 6 | eqtr4di 2811 | . . . . . 6 ⊢ (𝑔 = 𝑊 → (·𝑖‘𝑔) = , ) |
8 | 7 | oveqd 7173 | . . . . 5 ⊢ (𝑔 = 𝑊 → (𝑥(·𝑖‘𝑔)𝑦) = (𝑥 , 𝑦)) |
9 | 4, 4, 8 | mpoeq123dv 7229 | . . . 4 ⊢ (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦)) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
10 | df-ipf 20405 | . . . 4 ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) | |
11 | 3 | fvexi 6677 | . . . . 5 ⊢ 𝑉 ∈ V |
12 | 6 | fvexi 6677 | . . . . . . 7 ⊢ , ∈ V |
13 | 12 | rnex 7628 | . . . . . 6 ⊢ ran , ∈ V |
14 | p0ex 5257 | . . . . . 6 ⊢ {∅} ∈ V | |
15 | 13, 14 | unex 7473 | . . . . 5 ⊢ (ran , ∪ {∅}) ∈ V |
16 | df-ov 7159 | . . . . . . 7 ⊢ (𝑥 , 𝑦) = ( , ‘〈𝑥, 𝑦〉) | |
17 | fvrn0 6691 | . . . . . . 7 ⊢ ( , ‘〈𝑥, 𝑦〉) ∈ (ran , ∪ {∅}) | |
18 | 16, 17 | eqeltri 2848 | . . . . . 6 ⊢ (𝑥 , 𝑦) ∈ (ran , ∪ {∅}) |
19 | 18 | rgen2w 3083 | . . . . 5 ⊢ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅}) |
20 | 11, 11, 15, 19 | mpoexw 7787 | . . . 4 ⊢ (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ V |
21 | 9, 10, 20 | fvmpt 6764 | . . 3 ⊢ (𝑊 ∈ V → (·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
22 | fvprc 6655 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (·if‘𝑊) = ∅) | |
23 | fvprc 6655 | . . . . . . 7 ⊢ (¬ 𝑊 ∈ V → (Base‘𝑊) = ∅) | |
24 | 3, 23 | syl5eq 2805 | . . . . . 6 ⊢ (¬ 𝑊 ∈ V → 𝑉 = ∅) |
25 | 24 | olcd 871 | . . . . 5 ⊢ (¬ 𝑊 ∈ V → (𝑉 = ∅ ∨ 𝑉 = ∅)) |
26 | 0mpo0 7237 | . . . . 5 ⊢ ((𝑉 = ∅ ∨ 𝑉 = ∅) → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = ∅) | |
27 | 25, 26 | syl 17 | . . . 4 ⊢ (¬ 𝑊 ∈ V → (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = ∅) |
28 | 22, 27 | eqtr4d 2796 | . . 3 ⊢ (¬ 𝑊 ∈ V → (·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦))) |
29 | 21, 28 | pm2.61i 185 | . 2 ⊢ (·if‘𝑊) = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
30 | 1, 29 | eqtri 2781 | 1 ⊢ · = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ (𝑥 , 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 844 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∪ cun 3858 ∅c0 4227 {csn 4525 〈cop 4531 ran crn 5529 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 Basecbs 16554 ·𝑖cip 16641 ·ifcipf 20403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-ipf 20405 |
This theorem is referenced by: ipfval 20427 ipfeq 20428 ipffn 20429 phlipf 20430 phssip 20436 |
Copyright terms: Public domain | W3C validator |