MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffval Structured version   Visualization version   GIF version

Theorem ipffval 21666
Description: The inner product operation as a function. (Contributed by Mario Carneiro, 12-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
ipffval.1 𝑉 = (Base‘𝑊)
ipffval.2 , = (·𝑖𝑊)
ipffval.3 · = (·if𝑊)
Assertion
Ref Expression
ipffval · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Distinct variable groups:   𝑥,𝑦, ,   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem ipffval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ipffval.3 . 2 · = (·if𝑊)
2 fveq2 6906 . . . . . 6 (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊))
3 ipffval.1 . . . . . 6 𝑉 = (Base‘𝑊)
42, 3eqtr4di 2795 . . . . 5 (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉)
5 fveq2 6906 . . . . . . 7 (𝑔 = 𝑊 → (·𝑖𝑔) = (·𝑖𝑊))
6 ipffval.2 . . . . . . 7 , = (·𝑖𝑊)
75, 6eqtr4di 2795 . . . . . 6 (𝑔 = 𝑊 → (·𝑖𝑔) = , )
87oveqd 7448 . . . . 5 (𝑔 = 𝑊 → (𝑥(·𝑖𝑔)𝑦) = (𝑥 , 𝑦))
94, 4, 8mpoeq123dv 7508 . . . 4 (𝑔 = 𝑊 → (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
10 df-ipf 21645 . . . 4 ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
113fvexi 6920 . . . . 5 𝑉 ∈ V
126fvexi 6920 . . . . . . 7 , ∈ V
1312rnex 7932 . . . . . 6 ran , ∈ V
14 p0ex 5384 . . . . . 6 {∅} ∈ V
1513, 14unex 7764 . . . . 5 (ran , ∪ {∅}) ∈ V
16 df-ov 7434 . . . . . . 7 (𝑥 , 𝑦) = ( , ‘⟨𝑥, 𝑦⟩)
17 fvrn0 6936 . . . . . . 7 ( , ‘⟨𝑥, 𝑦⟩) ∈ (ran , ∪ {∅})
1816, 17eqeltri 2837 . . . . . 6 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
1918rgen2w 3066 . . . . 5 𝑥𝑉𝑦𝑉 (𝑥 , 𝑦) ∈ (ran , ∪ {∅})
2011, 11, 15, 19mpoexw 8103 . . . 4 (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) ∈ V
219, 10, 20fvmpt 7016 . . 3 (𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
22 fvprc 6898 . . . 4 𝑊 ∈ V → (·if𝑊) = ∅)
23 fvprc 6898 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
243, 23eqtrid 2789 . . . . . 6 𝑊 ∈ V → 𝑉 = ∅)
2524olcd 875 . . . . 5 𝑊 ∈ V → (𝑉 = ∅ ∨ 𝑉 = ∅))
26 0mpo0 7516 . . . . 5 ((𝑉 = ∅ ∨ 𝑉 = ∅) → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = ∅)
2725, 26syl 17 . . . 4 𝑊 ∈ V → (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)) = ∅)
2822, 27eqtr4d 2780 . . 3 𝑊 ∈ V → (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦)))
2921, 28pm2.61i 182 . 2 (·if𝑊) = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
301, 29eqtri 2765 1 · = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥 , 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 848   = wceq 1540  wcel 2108  Vcvv 3480  cun 3949  c0 4333  {csn 4626  cop 4632  ran crn 5686  cfv 6561  (class class class)co 7431  cmpo 7433  Basecbs 17247  ·𝑖cip 17302  ·ifcipf 21643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-ipf 21645
This theorem is referenced by:  ipfval  21667  ipfeq  21668  ipffn  21669  phlipf  21670  phssip  21676
  Copyright terms: Public domain W3C validator