MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffn Structured version   Visualization version   GIF version

Theorem ipffn 21636
Description: The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
ipffn.1 𝑉 = (Base‘𝑊)
ipffn.2 , = (·if𝑊)
Assertion
Ref Expression
ipffn , Fn (𝑉 × 𝑉)

Proof of Theorem ipffn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipffn.1 . . 3 𝑉 = (Base‘𝑊)
2 eqid 2734 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
3 ipffn.2 . . 3 , = (·if𝑊)
41, 2, 3ipffval 21633 . 2 , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦))
5 ovex 7447 . 2 (𝑥(·𝑖𝑊)𝑦) ∈ V
64, 5fnmpoi 8078 1 , Fn (𝑉 × 𝑉)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   × cxp 5665   Fn wfn 6537  cfv 6542  (class class class)co 7414  Basecbs 17230  ·𝑖cip 17282  ·ifcipf 21610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-ipf 21612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator