MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffn Structured version   Visualization version   GIF version

Theorem ipffn 21692
Description: The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
ipffn.1 𝑉 = (Base‘𝑊)
ipffn.2 , = (·if𝑊)
Assertion
Ref Expression
ipffn , Fn (𝑉 × 𝑉)

Proof of Theorem ipffn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipffn.1 . . 3 𝑉 = (Base‘𝑊)
2 eqid 2740 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
3 ipffn.2 . . 3 , = (·if𝑊)
41, 2, 3ipffval 21689 . 2 , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦))
5 ovex 7481 . 2 (𝑥(·𝑖𝑊)𝑦) ∈ V
64, 5fnmpoi 8111 1 , Fn (𝑉 × 𝑉)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   × cxp 5698   Fn wfn 6568  cfv 6573  (class class class)co 7448  Basecbs 17258  ·𝑖cip 17316  ·ifcipf 21666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-ipf 21668
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator