MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipffn Structured version   Visualization version   GIF version

Theorem ipffn 21687
Description: The inner product operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
ipffn.1 𝑉 = (Base‘𝑊)
ipffn.2 , = (·if𝑊)
Assertion
Ref Expression
ipffn , Fn (𝑉 × 𝑉)

Proof of Theorem ipffn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ipffn.1 . . 3 𝑉 = (Base‘𝑊)
2 eqid 2735 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
3 ipffn.2 . . 3 , = (·if𝑊)
41, 2, 3ipffval 21684 . 2 , = (𝑥𝑉, 𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦))
5 ovex 7464 . 2 (𝑥(·𝑖𝑊)𝑦) ∈ V
64, 5fnmpoi 8094 1 , Fn (𝑉 × 𝑉)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   × cxp 5687   Fn wfn 6558  cfv 6563  (class class class)co 7431  Basecbs 17245  ·𝑖cip 17303  ·ifcipf 21661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-ipf 21663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator