| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipcl | Structured version Visualization version GIF version | ||
| Description: Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipcl.f | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| ipcl | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 3 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐵)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐵)) | |
| 5 | 1, 2, 3, 4 | phllmhm 21650 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐵)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
| 6 | ipcl.f | . . . . . . 7 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | rlmbas 21200 | . . . . . . 7 ⊢ (Base‘𝐹) = (Base‘(ringLMod‘𝐹)) | |
| 8 | 6, 7 | eqtri 2765 | . . . . . 6 ⊢ 𝐾 = (Base‘(ringLMod‘𝐹)) |
| 9 | 3, 8 | lmhmf 21033 | . . . . 5 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐵)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐵)):𝑉⟶𝐾) |
| 10 | 5, 9 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐵)):𝑉⟶𝐾) |
| 11 | 4 | fmpt 7130 | . . . 4 ⊢ (∀𝑥 ∈ 𝑉 (𝑥 , 𝐵) ∈ 𝐾 ↔ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐵)):𝑉⟶𝐾) |
| 12 | 10, 11 | sylibr 234 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉) → ∀𝑥 ∈ 𝑉 (𝑥 , 𝐵) ∈ 𝐾) |
| 13 | oveq1 7438 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝐵) = (𝐴 , 𝐵)) | |
| 14 | 13 | eleq1d 2826 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 , 𝐵) ∈ 𝐾 ↔ (𝐴 , 𝐵) ∈ 𝐾)) |
| 15 | 14 | rspccva 3621 | . . 3 ⊢ ((∀𝑥 ∈ 𝑉 (𝑥 , 𝐵) ∈ 𝐾 ∧ 𝐴 ∈ 𝑉) → (𝐴 , 𝐵) ∈ 𝐾) |
| 16 | 12, 15 | stoic3 1776 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐴 , 𝐵) ∈ 𝐾) |
| 17 | 16 | 3com23 1127 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 , 𝐵) ∈ 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 Scalarcsca 17300 ·𝑖cip 17302 LMHom clmhm 21018 ringLModcrglmod 21171 PreHilcphl 21642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-sca 17313 df-vsca 17314 df-ip 17315 df-ghm 19231 df-lmhm 21021 df-sra 21172 df-rgmod 21173 df-phl 21644 |
| This theorem is referenced by: iporthcom 21653 ipdi 21658 ip2di 21659 ipsubdir 21660 ipsubdi 21661 ip2subdi 21662 ipassr 21664 phlipf 21670 ip2eq 21671 phlssphl 21677 lsmcss 21710 cphipcl 25225 cphnmf 25229 cphsubdir 25242 cphsubdi 25243 cph2subdi 25244 tcphcphlem3 25267 ipcau2 25268 tcphcphlem1 25269 tcphcph 25271 nmparlem 25273 pjthlem1 25471 |
| Copyright terms: Public domain | W3C validator |