MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcl Structured version   Visualization version   GIF version

Theorem ipcl 21593
Description: Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipcl.f 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ipcl ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ 𝐾)

Proof of Theorem ipcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
2 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
3 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
4 eqid 2735 . . . . . 6 (𝑥𝑉 ↦ (𝑥 , 𝐵)) = (𝑥𝑉 ↦ (𝑥 , 𝐵))
51, 2, 3, 4phllmhm 21592 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐵𝑉) → (𝑥𝑉 ↦ (𝑥 , 𝐵)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
6 ipcl.f . . . . . . 7 𝐾 = (Base‘𝐹)
7 rlmbas 21151 . . . . . . 7 (Base‘𝐹) = (Base‘(ringLMod‘𝐹))
86, 7eqtri 2758 . . . . . 6 𝐾 = (Base‘(ringLMod‘𝐹))
93, 8lmhmf 20992 . . . . 5 ((𝑥𝑉 ↦ (𝑥 , 𝐵)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥𝑉 ↦ (𝑥 , 𝐵)):𝑉𝐾)
105, 9syl 17 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐵𝑉) → (𝑥𝑉 ↦ (𝑥 , 𝐵)):𝑉𝐾)
114fmpt 7100 . . . 4 (∀𝑥𝑉 (𝑥 , 𝐵) ∈ 𝐾 ↔ (𝑥𝑉 ↦ (𝑥 , 𝐵)):𝑉𝐾)
1210, 11sylibr 234 . . 3 ((𝑊 ∈ PreHil ∧ 𝐵𝑉) → ∀𝑥𝑉 (𝑥 , 𝐵) ∈ 𝐾)
13 oveq1 7412 . . . . 5 (𝑥 = 𝐴 → (𝑥 , 𝐵) = (𝐴 , 𝐵))
1413eleq1d 2819 . . . 4 (𝑥 = 𝐴 → ((𝑥 , 𝐵) ∈ 𝐾 ↔ (𝐴 , 𝐵) ∈ 𝐾))
1514rspccva 3600 . . 3 ((∀𝑥𝑉 (𝑥 , 𝐵) ∈ 𝐾𝐴𝑉) → (𝐴 , 𝐵) ∈ 𝐾)
1612, 15stoic3 1776 . 2 ((𝑊 ∈ PreHil ∧ 𝐵𝑉𝐴𝑉) → (𝐴 , 𝐵) ∈ 𝐾)
17163com23 1126 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cmpt 5201  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  Scalarcsca 17274  ·𝑖cip 17276   LMHom clmhm 20977  ringLModcrglmod 21130  PreHilcphl 21584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-sca 17287  df-vsca 17288  df-ip 17289  df-ghm 19196  df-lmhm 20980  df-sra 21131  df-rgmod 21132  df-phl 21586
This theorem is referenced by:  iporthcom  21595  ipdi  21600  ip2di  21601  ipsubdir  21602  ipsubdi  21603  ip2subdi  21604  ipassr  21606  phlipf  21612  ip2eq  21613  phlssphl  21619  lsmcss  21652  cphipcl  25143  cphnmf  25147  cphsubdir  25160  cphsubdi  25161  cph2subdi  25162  tcphcphlem3  25185  ipcau2  25186  tcphcphlem1  25187  tcphcph  25189  nmparlem  25191  pjthlem1  25389
  Copyright terms: Public domain W3C validator