MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isirred Structured version   Visualization version   GIF version

Theorem isirred 20128
Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1 𝐵 = (Base‘𝑅)
irred.2 𝑈 = (Unit‘𝑅)
irred.3 𝐼 = (Irred‘𝑅)
irred.4 𝑁 = (𝐵𝑈)
irred.5 · = (.r𝑅)
Assertion
Ref Expression
isirred (𝑋𝐼 ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐼(𝑥,𝑦)

Proof of Theorem isirred
Dummy variables 𝑟 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6879 . . . 4 (𝑋 ∈ (Irred‘𝑅) → 𝑅 ∈ dom Irred)
2 irred.3 . . . 4 𝐼 = (Irred‘𝑅)
31, 2eleq2s 2856 . . 3 (𝑋𝐼𝑅 ∈ dom Irred)
43elexd 3465 . 2 (𝑋𝐼𝑅 ∈ V)
5 eldifi 4086 . . . . . 6 (𝑋 ∈ (𝐵𝑈) → 𝑋𝐵)
6 irred.4 . . . . . 6 𝑁 = (𝐵𝑈)
75, 6eleq2s 2856 . . . . 5 (𝑋𝑁𝑋𝐵)
8 irred.1 . . . . 5 𝐵 = (Base‘𝑅)
97, 8eleqtrdi 2848 . . . 4 (𝑋𝑁𝑋 ∈ (Base‘𝑅))
109elfvexd 6881 . . 3 (𝑋𝑁𝑅 ∈ V)
1110adantr 481 . 2 ((𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋) → 𝑅 ∈ V)
12 fvex 6855 . . . . . . . 8 (Base‘𝑟) ∈ V
13 difexg 5284 . . . . . . . 8 ((Base‘𝑟) ∈ V → ((Base‘𝑟) ∖ (Unit‘𝑟)) ∈ V)
1412, 13mp1i 13 . . . . . . 7 (𝑟 = 𝑅 → ((Base‘𝑟) ∖ (Unit‘𝑟)) ∈ V)
15 simpr 485 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟)))
16 simpl 483 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑟 = 𝑅)
1716fveq2d 6846 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Base‘𝑟) = (Base‘𝑅))
1817, 8eqtr4di 2794 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Base‘𝑟) = 𝐵)
1916fveq2d 6846 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Unit‘𝑟) = (Unit‘𝑅))
20 irred.2 . . . . . . . . . . . 12 𝑈 = (Unit‘𝑅)
2119, 20eqtr4di 2794 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Unit‘𝑟) = 𝑈)
2218, 21difeq12d 4083 . . . . . . . . . 10 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((Base‘𝑟) ∖ (Unit‘𝑟)) = (𝐵𝑈))
2322, 6eqtr4di 2794 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((Base‘𝑟) ∖ (Unit‘𝑟)) = 𝑁)
2415, 23eqtrd 2776 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑏 = 𝑁)
2516fveq2d 6846 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (.r𝑟) = (.r𝑅))
26 irred.5 . . . . . . . . . . . . 13 · = (.r𝑅)
2725, 26eqtr4di 2794 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (.r𝑟) = · )
2827oveqd 7374 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
2928neeq1d 3003 . . . . . . . . . 10 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((𝑥(.r𝑟)𝑦) ≠ 𝑧 ↔ (𝑥 · 𝑦) ≠ 𝑧))
3024, 29raleqbidv 3319 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (∀𝑦𝑏 (𝑥(.r𝑟)𝑦) ≠ 𝑧 ↔ ∀𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧))
3124, 30raleqbidv 3319 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑟)𝑦) ≠ 𝑧 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧))
3224, 31rabeqbidv 3424 . . . . . . 7 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → {𝑧𝑏 ∣ ∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑟)𝑦) ≠ 𝑧} = {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧})
3314, 32csbied 3893 . . . . . 6 (𝑟 = 𝑅((Base‘𝑟) ∖ (Unit‘𝑟)) / 𝑏{𝑧𝑏 ∣ ∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑟)𝑦) ≠ 𝑧} = {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧})
34 df-irred 20072 . . . . . 6 Irred = (𝑟 ∈ V ↦ ((Base‘𝑟) ∖ (Unit‘𝑟)) / 𝑏{𝑧𝑏 ∣ ∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑟)𝑦) ≠ 𝑧})
35 fvex 6855 . . . . . . . . . 10 (Base‘𝑅) ∈ V
368, 35eqeltri 2834 . . . . . . . . 9 𝐵 ∈ V
3736difexi 5285 . . . . . . . 8 (𝐵𝑈) ∈ V
386, 37eqeltri 2834 . . . . . . 7 𝑁 ∈ V
3938rabex 5289 . . . . . 6 {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧} ∈ V
4033, 34, 39fvmpt 6948 . . . . 5 (𝑅 ∈ V → (Irred‘𝑅) = {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧})
412, 40eqtrid 2788 . . . 4 (𝑅 ∈ V → 𝐼 = {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧})
4241eleq2d 2823 . . 3 (𝑅 ∈ V → (𝑋𝐼𝑋 ∈ {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧}))
43 neeq2 3007 . . . . 5 (𝑧 = 𝑋 → ((𝑥 · 𝑦) ≠ 𝑧 ↔ (𝑥 · 𝑦) ≠ 𝑋))
44432ralbidv 3212 . . . 4 (𝑧 = 𝑋 → (∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
4544elrab 3645 . . 3 (𝑋 ∈ {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧} ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
4642, 45bitrdi 286 . 2 (𝑅 ∈ V → (𝑋𝐼 ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋)))
474, 11, 46pm5.21nii 379 1 (𝑋𝐼 ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  Vcvv 3445  csb 3855  cdif 3907  dom cdm 5633  cfv 6496  (class class class)co 7357  Basecbs 17083  .rcmulr 17134  Unitcui 20068  Irredcir 20069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fv 6504  df-ov 7360  df-irred 20072
This theorem is referenced by:  isnirred  20129  isirred2  20130  opprirred  20131
  Copyright terms: Public domain W3C validator