Step | Hyp | Ref
| Expression |
1 | | elfvdm 6815 |
. . . 4
⊢ (𝑋 ∈ (Irred‘𝑅) → 𝑅 ∈ dom Irred) |
2 | | irred.3 |
. . . 4
⊢ 𝐼 = (Irred‘𝑅) |
3 | 1, 2 | eleq2s 2858 |
. . 3
⊢ (𝑋 ∈ 𝐼 → 𝑅 ∈ dom Irred) |
4 | 3 | elexd 3453 |
. 2
⊢ (𝑋 ∈ 𝐼 → 𝑅 ∈ V) |
5 | | eldifi 4062 |
. . . . . 6
⊢ (𝑋 ∈ (𝐵 ∖ 𝑈) → 𝑋 ∈ 𝐵) |
6 | | irred.4 |
. . . . . 6
⊢ 𝑁 = (𝐵 ∖ 𝑈) |
7 | 5, 6 | eleq2s 2858 |
. . . . 5
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
8 | | irred.1 |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
9 | 7, 8 | eleqtrdi 2850 |
. . . 4
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝑅)) |
10 | 9 | elfvexd 6817 |
. . 3
⊢ (𝑋 ∈ 𝑁 → 𝑅 ∈ V) |
11 | 10 | adantr 481 |
. 2
⊢ ((𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋) → 𝑅 ∈ V) |
12 | | fvex 6796 |
. . . . . . . 8
⊢
(Base‘𝑟)
∈ V |
13 | | difexg 5252 |
. . . . . . . 8
⊢
((Base‘𝑟)
∈ V → ((Base‘𝑟) ∖ (Unit‘𝑟)) ∈ V) |
14 | 12, 13 | mp1i 13 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ((Base‘𝑟) ∖ (Unit‘𝑟)) ∈ V) |
15 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) |
16 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑟 = 𝑅) |
17 | 16 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Base‘𝑟) = (Base‘𝑅)) |
18 | 17, 8 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Base‘𝑟) = 𝐵) |
19 | 16 | fveq2d 6787 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Unit‘𝑟) = (Unit‘𝑅)) |
20 | | irred.2 |
. . . . . . . . . . . 12
⊢ 𝑈 = (Unit‘𝑅) |
21 | 19, 20 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Unit‘𝑟) = 𝑈) |
22 | 18, 21 | difeq12d 4059 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((Base‘𝑟) ∖ (Unit‘𝑟)) = (𝐵 ∖ 𝑈)) |
23 | 22, 6 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((Base‘𝑟) ∖ (Unit‘𝑟)) = 𝑁) |
24 | 15, 23 | eqtrd 2779 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑏 = 𝑁) |
25 | 16 | fveq2d 6787 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (.r‘𝑟) = (.r‘𝑅)) |
26 | | irred.5 |
. . . . . . . . . . . . 13
⊢ · =
(.r‘𝑅) |
27 | 25, 26 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (.r‘𝑟) = · ) |
28 | 27 | oveqd 7301 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (𝑥(.r‘𝑟)𝑦) = (𝑥 · 𝑦)) |
29 | 28 | neeq1d 3004 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((𝑥(.r‘𝑟)𝑦) ≠ 𝑧 ↔ (𝑥 · 𝑦) ≠ 𝑧)) |
30 | 24, 29 | raleqbidv 3337 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ≠ 𝑧 ↔ ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧)) |
31 | 24, 30 | raleqbidv 3337 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ≠ 𝑧 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧)) |
32 | 24, 31 | rabeqbidv 3421 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → {𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ≠ 𝑧} = {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧}) |
33 | 14, 32 | csbied 3871 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ⦋((Base‘𝑟) ∖ (Unit‘𝑟)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ≠ 𝑧} = {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧}) |
34 | | df-irred 19894 |
. . . . . 6
⊢ Irred =
(𝑟 ∈ V ↦
⦋((Base‘𝑟) ∖ (Unit‘𝑟)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ≠ 𝑧}) |
35 | | fvex 6796 |
. . . . . . . . . 10
⊢
(Base‘𝑅)
∈ V |
36 | 8, 35 | eqeltri 2836 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
37 | 36 | difexi 5253 |
. . . . . . . 8
⊢ (𝐵 ∖ 𝑈) ∈ V |
38 | 6, 37 | eqeltri 2836 |
. . . . . . 7
⊢ 𝑁 ∈ V |
39 | 38 | rabex 5257 |
. . . . . 6
⊢ {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧} ∈ V |
40 | 33, 34, 39 | fvmpt 6884 |
. . . . 5
⊢ (𝑅 ∈ V →
(Irred‘𝑅) = {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧}) |
41 | 2, 40 | eqtrid 2791 |
. . . 4
⊢ (𝑅 ∈ V → 𝐼 = {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧}) |
42 | 41 | eleq2d 2825 |
. . 3
⊢ (𝑅 ∈ V → (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧})) |
43 | | neeq2 3008 |
. . . . 5
⊢ (𝑧 = 𝑋 → ((𝑥 · 𝑦) ≠ 𝑧 ↔ (𝑥 · 𝑦) ≠ 𝑋)) |
44 | 43 | 2ralbidv 3130 |
. . . 4
⊢ (𝑧 = 𝑋 → (∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
45 | 44 | elrab 3625 |
. . 3
⊢ (𝑋 ∈ {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧} ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
46 | 42, 45 | bitrdi 287 |
. 2
⊢ (𝑅 ∈ V → (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋))) |
47 | 4, 11, 46 | pm5.21nii 380 |
1
⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |