MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isirred Structured version   Visualization version   GIF version

Theorem isirred 20419
Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1 𝐵 = (Base‘𝑅)
irred.2 𝑈 = (Unit‘𝑅)
irred.3 𝐼 = (Irred‘𝑅)
irred.4 𝑁 = (𝐵𝑈)
irred.5 · = (.r𝑅)
Assertion
Ref Expression
isirred (𝑋𝐼 ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐼(𝑥,𝑦)

Proof of Theorem isirred
Dummy variables 𝑟 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6943 . . . 4 (𝑋 ∈ (Irred‘𝑅) → 𝑅 ∈ dom Irred)
2 irred.3 . . . 4 𝐼 = (Irred‘𝑅)
31, 2eleq2s 2859 . . 3 (𝑋𝐼𝑅 ∈ dom Irred)
43elexd 3504 . 2 (𝑋𝐼𝑅 ∈ V)
5 eldifi 4131 . . . . . 6 (𝑋 ∈ (𝐵𝑈) → 𝑋𝐵)
6 irred.4 . . . . . 6 𝑁 = (𝐵𝑈)
75, 6eleq2s 2859 . . . . 5 (𝑋𝑁𝑋𝐵)
8 irred.1 . . . . 5 𝐵 = (Base‘𝑅)
97, 8eleqtrdi 2851 . . . 4 (𝑋𝑁𝑋 ∈ (Base‘𝑅))
109elfvexd 6945 . . 3 (𝑋𝑁𝑅 ∈ V)
1110adantr 480 . 2 ((𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋) → 𝑅 ∈ V)
12 fvex 6919 . . . . . . . 8 (Base‘𝑟) ∈ V
13 difexg 5329 . . . . . . . 8 ((Base‘𝑟) ∈ V → ((Base‘𝑟) ∖ (Unit‘𝑟)) ∈ V)
1412, 13mp1i 13 . . . . . . 7 (𝑟 = 𝑅 → ((Base‘𝑟) ∖ (Unit‘𝑟)) ∈ V)
15 simpr 484 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟)))
16 simpl 482 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑟 = 𝑅)
1716fveq2d 6910 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Base‘𝑟) = (Base‘𝑅))
1817, 8eqtr4di 2795 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Base‘𝑟) = 𝐵)
1916fveq2d 6910 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Unit‘𝑟) = (Unit‘𝑅))
20 irred.2 . . . . . . . . . . . 12 𝑈 = (Unit‘𝑅)
2119, 20eqtr4di 2795 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Unit‘𝑟) = 𝑈)
2218, 21difeq12d 4127 . . . . . . . . . 10 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((Base‘𝑟) ∖ (Unit‘𝑟)) = (𝐵𝑈))
2322, 6eqtr4di 2795 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((Base‘𝑟) ∖ (Unit‘𝑟)) = 𝑁)
2415, 23eqtrd 2777 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑏 = 𝑁)
2516fveq2d 6910 . . . . . . . . . . . . 13 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (.r𝑟) = (.r𝑅))
26 irred.5 . . . . . . . . . . . . 13 · = (.r𝑅)
2725, 26eqtr4di 2795 . . . . . . . . . . . 12 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (.r𝑟) = · )
2827oveqd 7448 . . . . . . . . . . 11 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
2928neeq1d 3000 . . . . . . . . . 10 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((𝑥(.r𝑟)𝑦) ≠ 𝑧 ↔ (𝑥 · 𝑦) ≠ 𝑧))
3024, 29raleqbidv 3346 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (∀𝑦𝑏 (𝑥(.r𝑟)𝑦) ≠ 𝑧 ↔ ∀𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧))
3124, 30raleqbidv 3346 . . . . . . . 8 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑟)𝑦) ≠ 𝑧 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧))
3224, 31rabeqbidv 3455 . . . . . . 7 ((𝑟 = 𝑅𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → {𝑧𝑏 ∣ ∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑟)𝑦) ≠ 𝑧} = {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧})
3314, 32csbied 3935 . . . . . 6 (𝑟 = 𝑅((Base‘𝑟) ∖ (Unit‘𝑟)) / 𝑏{𝑧𝑏 ∣ ∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑟)𝑦) ≠ 𝑧} = {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧})
34 df-irred 20359 . . . . . 6 Irred = (𝑟 ∈ V ↦ ((Base‘𝑟) ∖ (Unit‘𝑟)) / 𝑏{𝑧𝑏 ∣ ∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑟)𝑦) ≠ 𝑧})
35 fvex 6919 . . . . . . . . . 10 (Base‘𝑅) ∈ V
368, 35eqeltri 2837 . . . . . . . . 9 𝐵 ∈ V
3736difexi 5330 . . . . . . . 8 (𝐵𝑈) ∈ V
386, 37eqeltri 2837 . . . . . . 7 𝑁 ∈ V
3938rabex 5339 . . . . . 6 {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧} ∈ V
4033, 34, 39fvmpt 7016 . . . . 5 (𝑅 ∈ V → (Irred‘𝑅) = {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧})
412, 40eqtrid 2789 . . . 4 (𝑅 ∈ V → 𝐼 = {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧})
4241eleq2d 2827 . . 3 (𝑅 ∈ V → (𝑋𝐼𝑋 ∈ {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧}))
43 neeq2 3004 . . . . 5 (𝑧 = 𝑋 → ((𝑥 · 𝑦) ≠ 𝑧 ↔ (𝑥 · 𝑦) ≠ 𝑋))
44432ralbidv 3221 . . . 4 (𝑧 = 𝑋 → (∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
4544elrab 3692 . . 3 (𝑋 ∈ {𝑧𝑁 ∣ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑧} ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
4642, 45bitrdi 287 . 2 (𝑅 ∈ V → (𝑋𝐼 ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋)))
474, 11, 46pm5.21nii 378 1 (𝑋𝐼 ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  Vcvv 3480  csb 3899  cdif 3948  dom cdm 5685  cfv 6561  (class class class)co 7431  Basecbs 17247  .rcmulr 17298  Unitcui 20355  Irredcir 20356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-irred 20359
This theorem is referenced by:  isnirred  20420  isirred2  20421  opprirred  20422  mxidlirredi  33499  rprmirred  33559  ply1dg3rt0irred  33607
  Copyright terms: Public domain W3C validator