Step | Hyp | Ref
| Expression |
1 | | elfvdm 6788 |
. . . 4
⊢ (𝑋 ∈ (Irred‘𝑅) → 𝑅 ∈ dom Irred) |
2 | | irred.3 |
. . . 4
⊢ 𝐼 = (Irred‘𝑅) |
3 | 1, 2 | eleq2s 2857 |
. . 3
⊢ (𝑋 ∈ 𝐼 → 𝑅 ∈ dom Irred) |
4 | 3 | elexd 3442 |
. 2
⊢ (𝑋 ∈ 𝐼 → 𝑅 ∈ V) |
5 | | eldifi 4057 |
. . . . . 6
⊢ (𝑋 ∈ (𝐵 ∖ 𝑈) → 𝑋 ∈ 𝐵) |
6 | | irred.4 |
. . . . . 6
⊢ 𝑁 = (𝐵 ∖ 𝑈) |
7 | 5, 6 | eleq2s 2857 |
. . . . 5
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐵) |
8 | | irred.1 |
. . . . 5
⊢ 𝐵 = (Base‘𝑅) |
9 | 7, 8 | eleqtrdi 2849 |
. . . 4
⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝑅)) |
10 | 9 | elfvexd 6790 |
. . 3
⊢ (𝑋 ∈ 𝑁 → 𝑅 ∈ V) |
11 | 10 | adantr 480 |
. 2
⊢ ((𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋) → 𝑅 ∈ V) |
12 | | fvex 6769 |
. . . . . . . 8
⊢
(Base‘𝑟)
∈ V |
13 | | difexg 5246 |
. . . . . . . 8
⊢
((Base‘𝑟)
∈ V → ((Base‘𝑟) ∖ (Unit‘𝑟)) ∈ V) |
14 | 12, 13 | mp1i 13 |
. . . . . . 7
⊢ (𝑟 = 𝑅 → ((Base‘𝑟) ∖ (Unit‘𝑟)) ∈ V) |
15 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) |
16 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑟 = 𝑅) |
17 | 16 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Base‘𝑟) = (Base‘𝑅)) |
18 | 17, 8 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Base‘𝑟) = 𝐵) |
19 | 16 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Unit‘𝑟) = (Unit‘𝑅)) |
20 | | irred.2 |
. . . . . . . . . . . 12
⊢ 𝑈 = (Unit‘𝑅) |
21 | 19, 20 | eqtr4di 2797 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (Unit‘𝑟) = 𝑈) |
22 | 18, 21 | difeq12d 4054 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((Base‘𝑟) ∖ (Unit‘𝑟)) = (𝐵 ∖ 𝑈)) |
23 | 22, 6 | eqtr4di 2797 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((Base‘𝑟) ∖ (Unit‘𝑟)) = 𝑁) |
24 | 15, 23 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → 𝑏 = 𝑁) |
25 | 16 | fveq2d 6760 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (.r‘𝑟) = (.r‘𝑅)) |
26 | | irred.5 |
. . . . . . . . . . . . 13
⊢ · =
(.r‘𝑅) |
27 | 25, 26 | eqtr4di 2797 |
. . . . . . . . . . . 12
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (.r‘𝑟) = · ) |
28 | 27 | oveqd 7272 |
. . . . . . . . . . 11
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (𝑥(.r‘𝑟)𝑦) = (𝑥 · 𝑦)) |
29 | 28 | neeq1d 3002 |
. . . . . . . . . 10
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → ((𝑥(.r‘𝑟)𝑦) ≠ 𝑧 ↔ (𝑥 · 𝑦) ≠ 𝑧)) |
30 | 24, 29 | raleqbidv 3327 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ≠ 𝑧 ↔ ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧)) |
31 | 24, 30 | raleqbidv 3327 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ≠ 𝑧 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧)) |
32 | 24, 31 | rabeqbidv 3410 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = ((Base‘𝑟) ∖ (Unit‘𝑟))) → {𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ≠ 𝑧} = {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧}) |
33 | 14, 32 | csbied 3866 |
. . . . . 6
⊢ (𝑟 = 𝑅 → ⦋((Base‘𝑟) ∖ (Unit‘𝑟)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ≠ 𝑧} = {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧}) |
34 | | df-irred 19800 |
. . . . . 6
⊢ Irred =
(𝑟 ∈ V ↦
⦋((Base‘𝑟) ∖ (Unit‘𝑟)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ≠ 𝑧}) |
35 | | fvex 6769 |
. . . . . . . . . 10
⊢
(Base‘𝑅)
∈ V |
36 | 8, 35 | eqeltri 2835 |
. . . . . . . . 9
⊢ 𝐵 ∈ V |
37 | 36 | difexi 5247 |
. . . . . . . 8
⊢ (𝐵 ∖ 𝑈) ∈ V |
38 | 6, 37 | eqeltri 2835 |
. . . . . . 7
⊢ 𝑁 ∈ V |
39 | 38 | rabex 5251 |
. . . . . 6
⊢ {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧} ∈ V |
40 | 33, 34, 39 | fvmpt 6857 |
. . . . 5
⊢ (𝑅 ∈ V →
(Irred‘𝑅) = {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧}) |
41 | 2, 40 | eqtrid 2790 |
. . . 4
⊢ (𝑅 ∈ V → 𝐼 = {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧}) |
42 | 41 | eleq2d 2824 |
. . 3
⊢ (𝑅 ∈ V → (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧})) |
43 | | neeq2 3006 |
. . . . 5
⊢ (𝑧 = 𝑋 → ((𝑥 · 𝑦) ≠ 𝑧 ↔ (𝑥 · 𝑦) ≠ 𝑋)) |
44 | 43 | 2ralbidv 3122 |
. . . 4
⊢ (𝑧 = 𝑋 → (∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
45 | 44 | elrab 3617 |
. . 3
⊢ (𝑋 ∈ {𝑧 ∈ 𝑁 ∣ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑧} ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
46 | 42, 45 | bitrdi 286 |
. 2
⊢ (𝑅 ∈ V → (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋))) |
47 | 4, 11, 46 | pm5.21nii 379 |
1
⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |