MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isirred Structured version   Visualization version   GIF version

Theorem isirred 20225
Description: An irreducible element of a ring is a non-unit that is not the product of two non-units. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1 𝐡 = (Baseβ€˜π‘…)
irred.2 π‘ˆ = (Unitβ€˜π‘…)
irred.3 𝐼 = (Irredβ€˜π‘…)
irred.4 𝑁 = (𝐡 βˆ– π‘ˆ)
irred.5 Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
isirred (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋))
Distinct variable groups:   π‘₯,𝑦,𝑁   π‘₯,𝑅,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   Β· (π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐼(π‘₯,𝑦)

Proof of Theorem isirred
Dummy variables π‘Ÿ 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6925 . . . 4 (𝑋 ∈ (Irredβ€˜π‘…) β†’ 𝑅 ∈ dom Irred)
2 irred.3 . . . 4 𝐼 = (Irredβ€˜π‘…)
31, 2eleq2s 2851 . . 3 (𝑋 ∈ 𝐼 β†’ 𝑅 ∈ dom Irred)
43elexd 3494 . 2 (𝑋 ∈ 𝐼 β†’ 𝑅 ∈ V)
5 eldifi 4125 . . . . . 6 (𝑋 ∈ (𝐡 βˆ– π‘ˆ) β†’ 𝑋 ∈ 𝐡)
6 irred.4 . . . . . 6 𝑁 = (𝐡 βˆ– π‘ˆ)
75, 6eleq2s 2851 . . . . 5 (𝑋 ∈ 𝑁 β†’ 𝑋 ∈ 𝐡)
8 irred.1 . . . . 5 𝐡 = (Baseβ€˜π‘…)
97, 8eleqtrdi 2843 . . . 4 (𝑋 ∈ 𝑁 β†’ 𝑋 ∈ (Baseβ€˜π‘…))
109elfvexd 6927 . . 3 (𝑋 ∈ 𝑁 β†’ 𝑅 ∈ V)
1110adantr 481 . 2 ((𝑋 ∈ 𝑁 ∧ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋) β†’ 𝑅 ∈ V)
12 fvex 6901 . . . . . . . 8 (Baseβ€˜π‘Ÿ) ∈ V
13 difexg 5326 . . . . . . . 8 ((Baseβ€˜π‘Ÿ) ∈ V β†’ ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ)) ∈ V)
1412, 13mp1i 13 . . . . . . 7 (π‘Ÿ = 𝑅 β†’ ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ)) ∈ V)
15 simpr 485 . . . . . . . . 9 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ)))
16 simpl 483 . . . . . . . . . . . . 13 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ π‘Ÿ = 𝑅)
1716fveq2d 6892 . . . . . . . . . . . 12 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
1817, 8eqtr4di 2790 . . . . . . . . . . 11 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ (Baseβ€˜π‘Ÿ) = 𝐡)
1916fveq2d 6892 . . . . . . . . . . . 12 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ (Unitβ€˜π‘Ÿ) = (Unitβ€˜π‘…))
20 irred.2 . . . . . . . . . . . 12 π‘ˆ = (Unitβ€˜π‘…)
2119, 20eqtr4di 2790 . . . . . . . . . . 11 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ (Unitβ€˜π‘Ÿ) = π‘ˆ)
2218, 21difeq12d 4122 . . . . . . . . . 10 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ)) = (𝐡 βˆ– π‘ˆ))
2322, 6eqtr4di 2790 . . . . . . . . 9 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ)) = 𝑁)
2415, 23eqtrd 2772 . . . . . . . 8 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ 𝑏 = 𝑁)
2516fveq2d 6892 . . . . . . . . . . . . 13 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ (.rβ€˜π‘Ÿ) = (.rβ€˜π‘…))
26 irred.5 . . . . . . . . . . . . 13 Β· = (.rβ€˜π‘…)
2725, 26eqtr4di 2790 . . . . . . . . . . . 12 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ (.rβ€˜π‘Ÿ) = Β· )
2827oveqd 7422 . . . . . . . . . . 11 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ (π‘₯(.rβ€˜π‘Ÿ)𝑦) = (π‘₯ Β· 𝑦))
2928neeq1d 3000 . . . . . . . . . 10 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ ((π‘₯(.rβ€˜π‘Ÿ)𝑦) β‰  𝑧 ↔ (π‘₯ Β· 𝑦) β‰  𝑧))
3024, 29raleqbidv 3342 . . . . . . . . 9 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ (βˆ€π‘¦ ∈ 𝑏 (π‘₯(.rβ€˜π‘Ÿ)𝑦) β‰  𝑧 ↔ βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑧))
3124, 30raleqbidv 3342 . . . . . . . 8 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ (βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(.rβ€˜π‘Ÿ)𝑦) β‰  𝑧 ↔ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑧))
3224, 31rabeqbidv 3449 . . . . . . 7 ((π‘Ÿ = 𝑅 ∧ 𝑏 = ((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ))) β†’ {𝑧 ∈ 𝑏 ∣ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(.rβ€˜π‘Ÿ)𝑦) β‰  𝑧} = {𝑧 ∈ 𝑁 ∣ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑧})
3314, 32csbied 3930 . . . . . 6 (π‘Ÿ = 𝑅 β†’ ⦋((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ)) / π‘β¦Œ{𝑧 ∈ 𝑏 ∣ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(.rβ€˜π‘Ÿ)𝑦) β‰  𝑧} = {𝑧 ∈ 𝑁 ∣ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑧})
34 df-irred 20165 . . . . . 6 Irred = (π‘Ÿ ∈ V ↦ ⦋((Baseβ€˜π‘Ÿ) βˆ– (Unitβ€˜π‘Ÿ)) / π‘β¦Œ{𝑧 ∈ 𝑏 ∣ βˆ€π‘₯ ∈ 𝑏 βˆ€π‘¦ ∈ 𝑏 (π‘₯(.rβ€˜π‘Ÿ)𝑦) β‰  𝑧})
35 fvex 6901 . . . . . . . . . 10 (Baseβ€˜π‘…) ∈ V
368, 35eqeltri 2829 . . . . . . . . 9 𝐡 ∈ V
3736difexi 5327 . . . . . . . 8 (𝐡 βˆ– π‘ˆ) ∈ V
386, 37eqeltri 2829 . . . . . . 7 𝑁 ∈ V
3938rabex 5331 . . . . . 6 {𝑧 ∈ 𝑁 ∣ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑧} ∈ V
4033, 34, 39fvmpt 6995 . . . . 5 (𝑅 ∈ V β†’ (Irredβ€˜π‘…) = {𝑧 ∈ 𝑁 ∣ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑧})
412, 40eqtrid 2784 . . . 4 (𝑅 ∈ V β†’ 𝐼 = {𝑧 ∈ 𝑁 ∣ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑧})
4241eleq2d 2819 . . 3 (𝑅 ∈ V β†’ (𝑋 ∈ 𝐼 ↔ 𝑋 ∈ {𝑧 ∈ 𝑁 ∣ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑧}))
43 neeq2 3004 . . . . 5 (𝑧 = 𝑋 β†’ ((π‘₯ Β· 𝑦) β‰  𝑧 ↔ (π‘₯ Β· 𝑦) β‰  𝑋))
44432ralbidv 3218 . . . 4 (𝑧 = 𝑋 β†’ (βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑧 ↔ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋))
4544elrab 3682 . . 3 (𝑋 ∈ {𝑧 ∈ 𝑁 ∣ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑧} ↔ (𝑋 ∈ 𝑁 ∧ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋))
4642, 45bitrdi 286 . 2 (𝑅 ∈ V β†’ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋)))
474, 11, 46pm5.21nii 379 1 (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  {crab 3432  Vcvv 3474  β¦‹csb 3892   βˆ– cdif 3944  dom cdm 5675  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  .rcmulr 17194  Unitcui 20161  Irredcir 20162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-irred 20165
This theorem is referenced by:  isnirred  20226  isirred2  20227  opprirred  20228  mxidlirredi  32575
  Copyright terms: Public domain W3C validator