Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isofval | Structured version Visualization version GIF version |
Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.) |
Ref | Expression |
---|---|
isofval | ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iso 17457 | . 2 ⊢ Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) | |
2 | fveq2 6769 | . . 3 ⊢ (𝑐 = 𝐶 → (Inv‘𝑐) = (Inv‘𝐶)) | |
3 | 2 | coeq2d 5769 | . 2 ⊢ (𝑐 = 𝐶 → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
4 | id 22 | . 2 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
5 | funmpt 6469 | . . 3 ⊢ Fun (𝑥 ∈ V ↦ dom 𝑥) | |
6 | fvexd 6784 | . . 3 ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) ∈ V) | |
7 | cofunexg 7783 | . . 3 ⊢ ((Fun (𝑥 ∈ V ↦ dom 𝑥) ∧ (Inv‘𝐶) ∈ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V) | |
8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V) |
9 | 1, 3, 4, 8 | fvmptd3 6893 | 1 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ↦ cmpt 5162 dom cdm 5589 ∘ ccom 5593 Fun wfun 6425 ‘cfv 6431 Catccat 17369 Invcinv 17453 Isociso 17454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-iso 17457 |
This theorem is referenced by: isoval 17473 isofn 17483 |
Copyright terms: Public domain | W3C validator |