| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isofval | Structured version Visualization version GIF version | ||
| Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.) |
| Ref | Expression |
|---|---|
| isofval | ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iso 17764 | . 2 ⊢ Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) | |
| 2 | fveq2 6886 | . . 3 ⊢ (𝑐 = 𝐶 → (Inv‘𝑐) = (Inv‘𝐶)) | |
| 3 | 2 | coeq2d 5853 | . 2 ⊢ (𝑐 = 𝐶 → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
| 4 | id 22 | . 2 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 5 | funmpt 6584 | . . 3 ⊢ Fun (𝑥 ∈ V ↦ dom 𝑥) | |
| 6 | fvexd 6901 | . . 3 ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) ∈ V) | |
| 7 | cofunexg 7955 | . . 3 ⊢ ((Fun (𝑥 ∈ V ↦ dom 𝑥) ∧ (Inv‘𝐶) ∈ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V) | |
| 8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V) |
| 9 | 1, 3, 4, 8 | fvmptd3 7019 | 1 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ↦ cmpt 5205 dom cdm 5665 ∘ ccom 5669 Fun wfun 6535 ‘cfv 6541 Catccat 17678 Invcinv 17760 Isociso 17761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-iso 17764 |
| This theorem is referenced by: isoval 17780 isofn 17790 |
| Copyright terms: Public domain | W3C validator |