MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofval Structured version   Visualization version   GIF version

Theorem isofval 17772
Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.)
Assertion
Ref Expression
isofval (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
Distinct variable group:   𝑥,𝐶

Proof of Theorem isofval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-iso 17764 . 2 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
2 fveq2 6886 . . 3 (𝑐 = 𝐶 → (Inv‘𝑐) = (Inv‘𝐶))
32coeq2d 5853 . 2 (𝑐 = 𝐶 → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
4 id 22 . 2 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
5 funmpt 6584 . . 3 Fun (𝑥 ∈ V ↦ dom 𝑥)
6 fvexd 6901 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) ∈ V)
7 cofunexg 7955 . . 3 ((Fun (𝑥 ∈ V ↦ dom 𝑥) ∧ (Inv‘𝐶) ∈ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V)
85, 6, 7sylancr 587 . 2 (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V)
91, 3, 4, 8fvmptd3 7019 1 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  cmpt 5205  dom cdm 5665  ccom 5669  Fun wfun 6535  cfv 6541  Catccat 17678  Invcinv 17760  Isociso 17761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-iso 17764
This theorem is referenced by:  isoval  17780  isofn  17790
  Copyright terms: Public domain W3C validator