MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofval Structured version   Visualization version   GIF version

Theorem isofval 17469
Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.)
Assertion
Ref Expression
isofval (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
Distinct variable group:   𝑥,𝐶

Proof of Theorem isofval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-iso 17461 . 2 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
2 fveq2 6774 . . 3 (𝑐 = 𝐶 → (Inv‘𝑐) = (Inv‘𝐶))
32coeq2d 5771 . 2 (𝑐 = 𝐶 → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
4 id 22 . 2 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
5 funmpt 6472 . . 3 Fun (𝑥 ∈ V ↦ dom 𝑥)
6 fvexd 6789 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) ∈ V)
7 cofunexg 7791 . . 3 ((Fun (𝑥 ∈ V ↦ dom 𝑥) ∧ (Inv‘𝐶) ∈ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V)
85, 6, 7sylancr 587 . 2 (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V)
91, 3, 4, 8fvmptd3 6898 1 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  cmpt 5157  dom cdm 5589  ccom 5593  Fun wfun 6427  cfv 6433  Catccat 17373  Invcinv 17457  Isociso 17458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-iso 17461
This theorem is referenced by:  isoval  17477  isofn  17487
  Copyright terms: Public domain W3C validator