MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofval Structured version   Visualization version   GIF version

Theorem isofval 17725
Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.)
Assertion
Ref Expression
isofval (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
Distinct variable group:   𝑥,𝐶

Proof of Theorem isofval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-iso 17717 . 2 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
2 fveq2 6860 . . 3 (𝑐 = 𝐶 → (Inv‘𝑐) = (Inv‘𝐶))
32coeq2d 5828 . 2 (𝑐 = 𝐶 → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
4 id 22 . 2 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
5 funmpt 6556 . . 3 Fun (𝑥 ∈ V ↦ dom 𝑥)
6 fvexd 6875 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) ∈ V)
7 cofunexg 7929 . . 3 ((Fun (𝑥 ∈ V ↦ dom 𝑥) ∧ (Inv‘𝐶) ∈ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V)
85, 6, 7sylancr 587 . 2 (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V)
91, 3, 4, 8fvmptd3 6993 1 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5190  dom cdm 5640  ccom 5644  Fun wfun 6507  cfv 6513  Catccat 17631  Invcinv 17713  Isociso 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-iso 17717
This theorem is referenced by:  isoval  17733  isofn  17743  isofnALT  49008
  Copyright terms: Public domain W3C validator