MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofval Structured version   Visualization version   GIF version

Theorem isofval 17664
Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.)
Assertion
Ref Expression
isofval (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
Distinct variable group:   𝑥,𝐶

Proof of Theorem isofval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 df-iso 17656 . 2 Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
2 fveq2 6822 . . 3 (𝑐 = 𝐶 → (Inv‘𝑐) = (Inv‘𝐶))
32coeq2d 5802 . 2 (𝑐 = 𝐶 → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
4 id 22 . 2 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
5 funmpt 6519 . . 3 Fun (𝑥 ∈ V ↦ dom 𝑥)
6 fvexd 6837 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) ∈ V)
7 cofunexg 7881 . . 3 ((Fun (𝑥 ∈ V ↦ dom 𝑥) ∧ (Inv‘𝐶) ∈ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V)
85, 6, 7sylancr 587 . 2 (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V)
91, 3, 4, 8fvmptd3 6952 1 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5172  dom cdm 5616  ccom 5620  Fun wfun 6475  cfv 6481  Catccat 17570  Invcinv 17652  Isociso 17653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-iso 17656
This theorem is referenced by:  isoval  17672  isofn  17682  isofnALT  49069
  Copyright terms: Public domain W3C validator