| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isofval | Structured version Visualization version GIF version | ||
| Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.) |
| Ref | Expression |
|---|---|
| isofval | ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iso 17658 | . 2 ⊢ Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) | |
| 2 | fveq2 6828 | . . 3 ⊢ (𝑐 = 𝐶 → (Inv‘𝑐) = (Inv‘𝐶)) | |
| 3 | 2 | coeq2d 5806 | . 2 ⊢ (𝑐 = 𝐶 → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
| 4 | id 22 | . 2 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 5 | funmpt 6524 | . . 3 ⊢ Fun (𝑥 ∈ V ↦ dom 𝑥) | |
| 6 | fvexd 6843 | . . 3 ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) ∈ V) | |
| 7 | cofunexg 7887 | . . 3 ⊢ ((Fun (𝑥 ∈ V ↦ dom 𝑥) ∧ (Inv‘𝐶) ∈ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V) | |
| 8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V) |
| 9 | 1, 3, 4, 8 | fvmptd3 6958 | 1 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5174 dom cdm 5619 ∘ ccom 5623 Fun wfun 6480 ‘cfv 6486 Catccat 17572 Invcinv 17654 Isociso 17655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-iso 17658 |
| This theorem is referenced by: isoval 17674 isofn 17684 isofnALT 49157 |
| Copyright terms: Public domain | W3C validator |