| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isofval | Structured version Visualization version GIF version | ||
| Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017.) |
| Ref | Expression |
|---|---|
| isofval | ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iso 17717 | . 2 ⊢ Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) | |
| 2 | fveq2 6860 | . . 3 ⊢ (𝑐 = 𝐶 → (Inv‘𝑐) = (Inv‘𝐶)) | |
| 3 | 2 | coeq2d 5828 | . 2 ⊢ (𝑐 = 𝐶 → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
| 4 | id 22 | . 2 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 5 | funmpt 6556 | . . 3 ⊢ Fun (𝑥 ∈ V ↦ dom 𝑥) | |
| 6 | fvexd 6875 | . . 3 ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) ∈ V) | |
| 7 | cofunexg 7929 | . . 3 ⊢ ((Fun (𝑥 ∈ V ↦ dom 𝑥) ∧ (Inv‘𝐶) ∈ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V) | |
| 8 | 5, 6, 7 | sylancr 587 | . 2 ⊢ (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) ∈ V) |
| 9 | 1, 3, 4, 8 | fvmptd3 6993 | 1 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5190 dom cdm 5640 ∘ ccom 5644 Fun wfun 6507 ‘cfv 6513 Catccat 17631 Invcinv 17713 Isociso 17714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-iso 17717 |
| This theorem is referenced by: isoval 17733 isofn 17743 isofnALT 49008 |
| Copyright terms: Public domain | W3C validator |