MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectffval Structured version   Visualization version   GIF version

Theorem sectffval 17811
Description: Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b 𝐵 = (Base‘𝐶)
issect.h 𝐻 = (Hom ‘𝐶)
issect.o · = (comp‘𝐶)
issect.i 1 = (Id‘𝐶)
issect.s 𝑆 = (Sect‘𝐶)
issect.c (𝜑𝐶 ∈ Cat)
issect.x (𝜑𝑋𝐵)
issect.y (𝜑𝑌𝐵)
Assertion
Ref Expression
sectffval (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑥,𝐵,𝑦   𝐶,𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦   𝑓,𝐻,𝑔,𝑥,𝑦   · ,𝑓,𝑔,𝑥,𝑦   𝑓,𝑋,𝑔,𝑥,𝑦   𝑓,𝑌,𝑔,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑆(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem sectffval
Dummy variables 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.s . 2 𝑆 = (Sect‘𝐶)
2 issect.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6920 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 issect.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2798 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fvexd 6935 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) ∈ V)
7 fveq2 6920 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
8 issect.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
97, 8eqtr4di 2798 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
10 simpr 484 . . . . . . . . . . 11 ((𝑐 = 𝐶 = 𝐻) → = 𝐻)
1110oveqd 7465 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (𝑥𝑦) = (𝑥𝐻𝑦))
1211eleq2d 2830 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → (𝑓 ∈ (𝑥𝑦) ↔ 𝑓 ∈ (𝑥𝐻𝑦)))
1310oveqd 7465 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (𝑦𝑥) = (𝑦𝐻𝑥))
1413eleq2d 2830 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → (𝑔 ∈ (𝑦𝑥) ↔ 𝑔 ∈ (𝑦𝐻𝑥)))
1512, 14anbi12d 631 . . . . . . . 8 ((𝑐 = 𝐶 = 𝐻) → ((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ↔ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥))))
16 simpl 482 . . . . . . . . . . . . 13 ((𝑐 = 𝐶 = 𝐻) → 𝑐 = 𝐶)
1716fveq2d 6924 . . . . . . . . . . . 12 ((𝑐 = 𝐶 = 𝐻) → (comp‘𝑐) = (comp‘𝐶))
18 issect.o . . . . . . . . . . . 12 · = (comp‘𝐶)
1917, 18eqtr4di 2798 . . . . . . . . . . 11 ((𝑐 = 𝐶 = 𝐻) → (comp‘𝑐) = · )
2019oveqd 7465 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥) = (⟨𝑥, 𝑦· 𝑥))
2120oveqd 7465 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓))
2216fveq2d 6924 . . . . . . . . . . 11 ((𝑐 = 𝐶 = 𝐻) → (Id‘𝑐) = (Id‘𝐶))
23 issect.i . . . . . . . . . . 11 1 = (Id‘𝐶)
2422, 23eqtr4di 2798 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (Id‘𝑐) = 1 )
2524fveq1d 6922 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
2621, 25eqeq12d 2756 . . . . . . . 8 ((𝑐 = 𝐶 = 𝐻) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥) ↔ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥)))
2715, 26anbi12d 631 . . . . . . 7 ((𝑐 = 𝐶 = 𝐻) → (((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))))
286, 9, 27sbcied2 3852 . . . . . 6 (𝑐 = 𝐶 → ([(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))))
2928opabbidv 5232 . . . . 5 (𝑐 = 𝐶 → {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))})
305, 5, 29mpoeq123dv 7525 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
31 df-sect 17808 . . . 4 Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
324fvexi 6934 . . . . 5 𝐵 ∈ V
3332, 32mpoex 8120 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}) ∈ V
3430, 31, 33fvmpt 7029 . . 3 (𝐶 ∈ Cat → (Sect‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
352, 34syl 17 . 2 (𝜑 → (Sect‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
361, 35eqtrid 2792 1 (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  [wsbc 3804  cop 4654  {copab 5228  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  Sectcsect 17805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-sect 17808
This theorem is referenced by:  sectfval  17812
  Copyright terms: Public domain W3C validator