MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectffval Structured version   Visualization version   GIF version

Theorem sectffval 17379
Description: Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b 𝐵 = (Base‘𝐶)
issect.h 𝐻 = (Hom ‘𝐶)
issect.o · = (comp‘𝐶)
issect.i 1 = (Id‘𝐶)
issect.s 𝑆 = (Sect‘𝐶)
issect.c (𝜑𝐶 ∈ Cat)
issect.x (𝜑𝑋𝐵)
issect.y (𝜑𝑌𝐵)
Assertion
Ref Expression
sectffval (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑥,𝐵,𝑦   𝐶,𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦   𝑓,𝐻,𝑔,𝑥,𝑦   · ,𝑓,𝑔,𝑥,𝑦   𝑓,𝑋,𝑔,𝑥,𝑦   𝑓,𝑌,𝑔,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑆(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem sectffval
Dummy variables 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.s . 2 𝑆 = (Sect‘𝐶)
2 issect.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6756 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 issect.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2797 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fvexd 6771 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) ∈ V)
7 fveq2 6756 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
8 issect.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
97, 8eqtr4di 2797 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
10 simpr 484 . . . . . . . . . . 11 ((𝑐 = 𝐶 = 𝐻) → = 𝐻)
1110oveqd 7272 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (𝑥𝑦) = (𝑥𝐻𝑦))
1211eleq2d 2824 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → (𝑓 ∈ (𝑥𝑦) ↔ 𝑓 ∈ (𝑥𝐻𝑦)))
1310oveqd 7272 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (𝑦𝑥) = (𝑦𝐻𝑥))
1413eleq2d 2824 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → (𝑔 ∈ (𝑦𝑥) ↔ 𝑔 ∈ (𝑦𝐻𝑥)))
1512, 14anbi12d 630 . . . . . . . 8 ((𝑐 = 𝐶 = 𝐻) → ((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ↔ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥))))
16 simpl 482 . . . . . . . . . . . . 13 ((𝑐 = 𝐶 = 𝐻) → 𝑐 = 𝐶)
1716fveq2d 6760 . . . . . . . . . . . 12 ((𝑐 = 𝐶 = 𝐻) → (comp‘𝑐) = (comp‘𝐶))
18 issect.o . . . . . . . . . . . 12 · = (comp‘𝐶)
1917, 18eqtr4di 2797 . . . . . . . . . . 11 ((𝑐 = 𝐶 = 𝐻) → (comp‘𝑐) = · )
2019oveqd 7272 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥) = (⟨𝑥, 𝑦· 𝑥))
2120oveqd 7272 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓))
2216fveq2d 6760 . . . . . . . . . . 11 ((𝑐 = 𝐶 = 𝐻) → (Id‘𝑐) = (Id‘𝐶))
23 issect.i . . . . . . . . . . 11 1 = (Id‘𝐶)
2422, 23eqtr4di 2797 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (Id‘𝑐) = 1 )
2524fveq1d 6758 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
2621, 25eqeq12d 2754 . . . . . . . 8 ((𝑐 = 𝐶 = 𝐻) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥) ↔ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥)))
2715, 26anbi12d 630 . . . . . . 7 ((𝑐 = 𝐶 = 𝐻) → (((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))))
286, 9, 27sbcied2 3758 . . . . . 6 (𝑐 = 𝐶 → ([(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))))
2928opabbidv 5136 . . . . 5 (𝑐 = 𝐶 → {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))})
305, 5, 29mpoeq123dv 7328 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
31 df-sect 17376 . . . 4 Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
324fvexi 6770 . . . . 5 𝐵 ∈ V
3332, 32mpoex 7893 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}) ∈ V
3430, 31, 33fvmpt 6857 . . 3 (𝐶 ∈ Cat → (Sect‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
352, 34syl 17 . 2 (𝜑 → (Sect‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
361, 35eqtrid 2790 1 (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  [wsbc 3711  cop 4564  {copab 5132  cfv 6418  (class class class)co 7255  cmpo 7257  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291  Sectcsect 17373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-sect 17376
This theorem is referenced by:  sectfval  17380
  Copyright terms: Public domain W3C validator