Step | Hyp | Ref
| Expression |
1 | | issect.s |
. 2
⊢ 𝑆 = (Sect‘𝐶) |
2 | | issect.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ Cat) |
3 | | fveq2 6774 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) |
4 | | issect.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐶) |
5 | 3, 4 | eqtr4di 2796 |
. . . . 5
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
6 | | fvexd 6789 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) ∈ V) |
7 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) |
8 | | issect.h |
. . . . . . . 8
⊢ 𝐻 = (Hom ‘𝐶) |
9 | 7, 8 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
10 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ℎ = 𝐻) |
11 | 10 | oveqd 7292 |
. . . . . . . . . 10
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑥ℎ𝑦) = (𝑥𝐻𝑦)) |
12 | 11 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑓 ∈ (𝑥ℎ𝑦) ↔ 𝑓 ∈ (𝑥𝐻𝑦))) |
13 | 10 | oveqd 7292 |
. . . . . . . . . 10
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑦ℎ𝑥) = (𝑦𝐻𝑥)) |
14 | 13 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑔 ∈ (𝑦ℎ𝑥) ↔ 𝑔 ∈ (𝑦𝐻𝑥))) |
15 | 12, 14 | anbi12d 631 |
. . . . . . . 8
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ↔ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)))) |
16 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → 𝑐 = 𝐶) |
17 | 16 | fveq2d 6778 |
. . . . . . . . . . . 12
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (comp‘𝑐) = (comp‘𝐶)) |
18 | | issect.o |
. . . . . . . . . . . 12
⊢ · =
(comp‘𝐶) |
19 | 17, 18 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (comp‘𝑐) = · ) |
20 | 19 | oveqd 7292 |
. . . . . . . . . 10
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (〈𝑥, 𝑦〉(comp‘𝑐)𝑥) = (〈𝑥, 𝑦〉 · 𝑥)) |
21 | 20 | oveqd 7292 |
. . . . . . . . 9
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓)) |
22 | 16 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (Id‘𝑐) = (Id‘𝐶)) |
23 | | issect.i |
. . . . . . . . . . 11
⊢ 1 =
(Id‘𝐶) |
24 | 22, 23 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (Id‘𝑐) = 1 ) |
25 | 24 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ((Id‘𝑐)‘𝑥) = ( 1 ‘𝑥)) |
26 | 21, 25 | eqeq12d 2754 |
. . . . . . . 8
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ((𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥) ↔ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))) |
27 | 15, 26 | anbi12d 631 |
. . . . . . 7
⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥)))) |
28 | 6, 9, 27 | sbcied2 3763 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ([(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥)))) |
29 | 28 | opabbidv 5140 |
. . . . 5
⊢ (𝑐 = 𝐶 → {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))}) |
30 | 5, 5, 29 | mpoeq123dv 7350 |
. . . 4
⊢ (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))})) |
31 | | df-sect 17459 |
. . . 4
⊢ Sect =
(𝑐 ∈ Cat ↦
(𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))})) |
32 | 4 | fvexi 6788 |
. . . . 5
⊢ 𝐵 ∈ V |
33 | 32, 32 | mpoex 7920 |
. . . 4
⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))}) ∈ V |
34 | 30, 31, 33 | fvmpt 6875 |
. . 3
⊢ (𝐶 ∈ Cat →
(Sect‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))})) |
35 | 2, 34 | syl 17 |
. 2
⊢ (𝜑 → (Sect‘𝐶) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))})) |
36 | 1, 35 | eqtrid 2790 |
1
⊢ (𝜑 → 𝑆 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉 · 𝑥)𝑓) = ( 1 ‘𝑥))})) |