MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectffval Structured version   Visualization version   GIF version

Theorem sectffval 17712
Description: Value of the section operation. (Contributed by Mario Carneiro, 2-Jan-2017.) Removed redundant hypotheses. (Revised by Zhi Wang, 27-Oct-2025.)
Hypotheses
Ref Expression
issect.b 𝐵 = (Base‘𝐶)
issect.h 𝐻 = (Hom ‘𝐶)
issect.o · = (comp‘𝐶)
issect.i 1 = (Id‘𝐶)
issect.s 𝑆 = (Sect‘𝐶)
issect.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
sectffval (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑥,𝐵,𝑦   𝐶,𝑓,𝑔,𝑥,𝑦   𝜑,𝑓,𝑔,𝑥,𝑦   𝑓,𝐻,𝑔,𝑥,𝑦   · ,𝑓,𝑔,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑓,𝑔)   𝑆(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem sectffval
Dummy variables 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.s . 2 𝑆 = (Sect‘𝐶)
2 issect.c . . 3 (𝜑𝐶 ∈ Cat)
3 fveq2 6858 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
4 issect.b . . . . . 6 𝐵 = (Base‘𝐶)
53, 4eqtr4di 2782 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
6 fvexd 6873 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) ∈ V)
7 fveq2 6858 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
8 issect.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
97, 8eqtr4di 2782 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
10 simpr 484 . . . . . . . . . . 11 ((𝑐 = 𝐶 = 𝐻) → = 𝐻)
1110oveqd 7404 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (𝑥𝑦) = (𝑥𝐻𝑦))
1211eleq2d 2814 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → (𝑓 ∈ (𝑥𝑦) ↔ 𝑓 ∈ (𝑥𝐻𝑦)))
1310oveqd 7404 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (𝑦𝑥) = (𝑦𝐻𝑥))
1413eleq2d 2814 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → (𝑔 ∈ (𝑦𝑥) ↔ 𝑔 ∈ (𝑦𝐻𝑥)))
1512, 14anbi12d 632 . . . . . . . 8 ((𝑐 = 𝐶 = 𝐻) → ((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ↔ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥))))
16 simpl 482 . . . . . . . . . . . . 13 ((𝑐 = 𝐶 = 𝐻) → 𝑐 = 𝐶)
1716fveq2d 6862 . . . . . . . . . . . 12 ((𝑐 = 𝐶 = 𝐻) → (comp‘𝑐) = (comp‘𝐶))
18 issect.o . . . . . . . . . . . 12 · = (comp‘𝐶)
1917, 18eqtr4di 2782 . . . . . . . . . . 11 ((𝑐 = 𝐶 = 𝐻) → (comp‘𝑐) = · )
2019oveqd 7404 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥) = (⟨𝑥, 𝑦· 𝑥))
2120oveqd 7404 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓))
2216fveq2d 6862 . . . . . . . . . . 11 ((𝑐 = 𝐶 = 𝐻) → (Id‘𝑐) = (Id‘𝐶))
23 issect.i . . . . . . . . . . 11 1 = (Id‘𝐶)
2422, 23eqtr4di 2782 . . . . . . . . . 10 ((𝑐 = 𝐶 = 𝐻) → (Id‘𝑐) = 1 )
2524fveq1d 6860 . . . . . . . . 9 ((𝑐 = 𝐶 = 𝐻) → ((Id‘𝑐)‘𝑥) = ( 1𝑥))
2621, 25eqeq12d 2745 . . . . . . . 8 ((𝑐 = 𝐶 = 𝐻) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥) ↔ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥)))
2715, 26anbi12d 632 . . . . . . 7 ((𝑐 = 𝐶 = 𝐻) → (((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))))
286, 9, 27sbcied2 3798 . . . . . 6 (𝑐 = 𝐶 → ([(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))))
2928opabbidv 5173 . . . . 5 (𝑐 = 𝐶 → {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))})
305, 5, 29mpoeq123dv 7464 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
31 df-sect 17709 . . . 4 Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
324fvexi 6872 . . . . 5 𝐵 ∈ V
3332, 32mpoex 8058 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}) ∈ V
3430, 31, 33fvmpt 6968 . . 3 (𝐶 ∈ Cat → (Sect‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
352, 34syl 17 . 2 (𝜑 → (Sect‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
361, 35eqtrid 2776 1 (𝜑𝑆 = (𝑥𝐵, 𝑦𝐵 ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑥)) ∧ (𝑔(⟨𝑥, 𝑦· 𝑥)𝑓) = ( 1𝑥))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  [wsbc 3753  cop 4595  {copab 5169  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Sectcsect 17706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-sect 17709
This theorem is referenced by:  sectfval  17713  sectrcl2  49012  sectfn  49018  sectpropdlem  49025
  Copyright terms: Public domain W3C validator