Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgr Structured version   Visualization version   GIF version

Theorem isomgr 42746
Description: The isomorphy relation for two graphs. (Contributed by AV, 11-Nov-2022.)
Hypotheses
Ref Expression
isomgr.v 𝑉 = (Vtx‘𝐴)
isomgr.w 𝑊 = (Vtx‘𝐵)
isomgr.i 𝐼 = (iEdg‘𝐴)
isomgr.j 𝐽 = (iEdg‘𝐵)
Assertion
Ref Expression
isomgr ((𝐴𝑋𝐵𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑖   𝐵,𝑓,𝑔,𝑖   𝑖,𝐼
Allowed substitution hints:   𝐼(𝑓,𝑔)   𝐽(𝑓,𝑔,𝑖)   𝑉(𝑓,𝑔,𝑖)   𝑊(𝑓,𝑔,𝑖)   𝑋(𝑓,𝑔,𝑖)   𝑌(𝑓,𝑔,𝑖)

Proof of Theorem isomgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2779 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑓 = 𝑓)
2 fveq2 6448 . . . . . . 7 (𝑥 = 𝐴 → (Vtx‘𝑥) = (Vtx‘𝐴))
32adantr 474 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑥) = (Vtx‘𝐴))
4 isomgr.v . . . . . 6 𝑉 = (Vtx‘𝐴)
53, 4syl6eqr 2832 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑥) = 𝑉)
6 fveq2 6448 . . . . . . 7 (𝑦 = 𝐵 → (Vtx‘𝑦) = (Vtx‘𝐵))
76adantl 475 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑦) = (Vtx‘𝐵))
8 isomgr.w . . . . . 6 𝑊 = (Vtx‘𝐵)
97, 8syl6eqr 2832 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑦) = 𝑊)
101, 5, 9f1oeq123d 6388 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ↔ 𝑓:𝑉1-1-onto𝑊))
11 eqidd 2779 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑔 = 𝑔)
12 fveq2 6448 . . . . . . . . . 10 (𝑥 = 𝐴 → (iEdg‘𝑥) = (iEdg‘𝐴))
1312adantr 474 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑥) = (iEdg‘𝐴))
14 isomgr.i . . . . . . . . 9 𝐼 = (iEdg‘𝐴)
1513, 14syl6eqr 2832 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑥) = 𝐼)
1615dmeqd 5573 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → dom (iEdg‘𝑥) = dom 𝐼)
17 fveq2 6448 . . . . . . . . . 10 (𝑦 = 𝐵 → (iEdg‘𝑦) = (iEdg‘𝐵))
1817adantl 475 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑦) = (iEdg‘𝐵))
19 isomgr.j . . . . . . . . 9 𝐽 = (iEdg‘𝐵)
2018, 19syl6eqr 2832 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑦) = 𝐽)
2120dmeqd 5573 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → dom (iEdg‘𝑦) = dom 𝐽)
2211, 16, 21f1oeq123d 6388 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ↔ 𝑔:dom 𝐼1-1-onto→dom 𝐽))
2315fveq1d 6450 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ((iEdg‘𝑥)‘𝑖) = (𝐼𝑖))
2423imaeq2d 5722 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑓 “ ((iEdg‘𝑥)‘𝑖)) = (𝑓 “ (𝐼𝑖)))
2520fveq1d 6450 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ((iEdg‘𝑦)‘(𝑔𝑖)) = (𝐽‘(𝑔𝑖)))
2624, 25eqeq12d 2793 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)) ↔ (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
2716, 26raleqbidv 3326 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
2822, 27anbi12d 624 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))) ↔ (𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
2928exbidv 1964 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
3010, 29anbi12d 624 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
3130exbidv 1964 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
32 df-isomgr 42744 . 2 IsomGr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))))}
3331, 32brabga 5228 1 ((𝐴𝑋𝐵𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wex 1823  wcel 2107  wral 3090   class class class wbr 4888  dom cdm 5357  cima 5360  1-1-ontowf1o 6136  cfv 6137  Vtxcvtx 26348  iEdgciedg 26349   IsomGr cisomgr 42742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isomgr 42744
This theorem is referenced by:  isisomgr  42747  isomgreqve  42748  isomushgr  42749  isomgrsym  42759  isomgrtr  42762  ushrisomgr  42764
  Copyright terms: Public domain W3C validator