Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgr Structured version   Visualization version   GIF version

Theorem isomgr 45163
Description: The isomorphy relation for two graphs. (Contributed by AV, 11-Nov-2022.)
Hypotheses
Ref Expression
isomgr.v 𝑉 = (Vtx‘𝐴)
isomgr.w 𝑊 = (Vtx‘𝐵)
isomgr.i 𝐼 = (iEdg‘𝐴)
isomgr.j 𝐽 = (iEdg‘𝐵)
Assertion
Ref Expression
isomgr ((𝐴𝑋𝐵𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑖   𝐵,𝑓,𝑔,𝑖   𝑖,𝐼
Allowed substitution hints:   𝐼(𝑓,𝑔)   𝐽(𝑓,𝑔,𝑖)   𝑉(𝑓,𝑔,𝑖)   𝑊(𝑓,𝑔,𝑖)   𝑋(𝑓,𝑔,𝑖)   𝑌(𝑓,𝑔,𝑖)

Proof of Theorem isomgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2739 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑓 = 𝑓)
2 fveq2 6756 . . . . . . 7 (𝑥 = 𝐴 → (Vtx‘𝑥) = (Vtx‘𝐴))
32adantr 480 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑥) = (Vtx‘𝐴))
4 isomgr.v . . . . . 6 𝑉 = (Vtx‘𝐴)
53, 4eqtr4di 2797 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑥) = 𝑉)
6 fveq2 6756 . . . . . . 7 (𝑦 = 𝐵 → (Vtx‘𝑦) = (Vtx‘𝐵))
76adantl 481 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑦) = (Vtx‘𝐵))
8 isomgr.w . . . . . 6 𝑊 = (Vtx‘𝐵)
97, 8eqtr4di 2797 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑦) = 𝑊)
101, 5, 9f1oeq123d 6694 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ↔ 𝑓:𝑉1-1-onto𝑊))
11 eqidd 2739 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑔 = 𝑔)
12 fveq2 6756 . . . . . . . . . 10 (𝑥 = 𝐴 → (iEdg‘𝑥) = (iEdg‘𝐴))
1312adantr 480 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑥) = (iEdg‘𝐴))
14 isomgr.i . . . . . . . . 9 𝐼 = (iEdg‘𝐴)
1513, 14eqtr4di 2797 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑥) = 𝐼)
1615dmeqd 5803 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → dom (iEdg‘𝑥) = dom 𝐼)
17 fveq2 6756 . . . . . . . . . 10 (𝑦 = 𝐵 → (iEdg‘𝑦) = (iEdg‘𝐵))
1817adantl 481 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑦) = (iEdg‘𝐵))
19 isomgr.j . . . . . . . . 9 𝐽 = (iEdg‘𝐵)
2018, 19eqtr4di 2797 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑦) = 𝐽)
2120dmeqd 5803 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → dom (iEdg‘𝑦) = dom 𝐽)
2211, 16, 21f1oeq123d 6694 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ↔ 𝑔:dom 𝐼1-1-onto→dom 𝐽))
2315fveq1d 6758 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ((iEdg‘𝑥)‘𝑖) = (𝐼𝑖))
2423imaeq2d 5958 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑓 “ ((iEdg‘𝑥)‘𝑖)) = (𝑓 “ (𝐼𝑖)))
2520fveq1d 6758 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ((iEdg‘𝑦)‘(𝑔𝑖)) = (𝐽‘(𝑔𝑖)))
2624, 25eqeq12d 2754 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)) ↔ (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
2716, 26raleqbidv 3327 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
2822, 27anbi12d 630 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))) ↔ (𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
2928exbidv 1925 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
3010, 29anbi12d 630 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
3130exbidv 1925 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
32 df-isomgr 45161 . 2 IsomGr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))))}
3331, 32brabga 5440 1 ((𝐴𝑋𝐵𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063   class class class wbr 5070  dom cdm 5580  cima 5583  1-1-ontowf1o 6417  cfv 6418  Vtxcvtx 27269  iEdgciedg 27270   IsomGr cisomgr 45159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isomgr 45161
This theorem is referenced by:  isisomgr  45164  isomgreqve  45165  isomushgr  45166  isomgrsym  45176  isomgrtr  45179  ushrisomgr  45181
  Copyright terms: Public domain W3C validator