Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgr Structured version   Visualization version   GIF version

Theorem isomgr 46005
Description: The isomorphy relation for two graphs. (Contributed by AV, 11-Nov-2022.)
Hypotheses
Ref Expression
isomgr.v 𝑉 = (Vtx‘𝐴)
isomgr.w 𝑊 = (Vtx‘𝐵)
isomgr.i 𝐼 = (iEdg‘𝐴)
isomgr.j 𝐽 = (iEdg‘𝐵)
Assertion
Ref Expression
isomgr ((𝐴𝑋𝐵𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Distinct variable groups:   𝐴,𝑓,𝑔,𝑖   𝐵,𝑓,𝑔,𝑖   𝑖,𝐼
Allowed substitution hints:   𝐼(𝑓,𝑔)   𝐽(𝑓,𝑔,𝑖)   𝑉(𝑓,𝑔,𝑖)   𝑊(𝑓,𝑔,𝑖)   𝑋(𝑓,𝑔,𝑖)   𝑌(𝑓,𝑔,𝑖)

Proof of Theorem isomgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑓 = 𝑓)
2 fveq2 6842 . . . . . . 7 (𝑥 = 𝐴 → (Vtx‘𝑥) = (Vtx‘𝐴))
32adantr 481 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑥) = (Vtx‘𝐴))
4 isomgr.v . . . . . 6 𝑉 = (Vtx‘𝐴)
53, 4eqtr4di 2794 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑥) = 𝑉)
6 fveq2 6842 . . . . . . 7 (𝑦 = 𝐵 → (Vtx‘𝑦) = (Vtx‘𝐵))
76adantl 482 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑦) = (Vtx‘𝐵))
8 isomgr.w . . . . . 6 𝑊 = (Vtx‘𝐵)
97, 8eqtr4di 2794 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (Vtx‘𝑦) = 𝑊)
101, 5, 9f1oeq123d 6778 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ↔ 𝑓:𝑉1-1-onto𝑊))
11 eqidd 2737 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑔 = 𝑔)
12 fveq2 6842 . . . . . . . . . 10 (𝑥 = 𝐴 → (iEdg‘𝑥) = (iEdg‘𝐴))
1312adantr 481 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑥) = (iEdg‘𝐴))
14 isomgr.i . . . . . . . . 9 𝐼 = (iEdg‘𝐴)
1513, 14eqtr4di 2794 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑥) = 𝐼)
1615dmeqd 5861 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → dom (iEdg‘𝑥) = dom 𝐼)
17 fveq2 6842 . . . . . . . . . 10 (𝑦 = 𝐵 → (iEdg‘𝑦) = (iEdg‘𝐵))
1817adantl 482 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑦) = (iEdg‘𝐵))
19 isomgr.j . . . . . . . . 9 𝐽 = (iEdg‘𝐵)
2018, 19eqtr4di 2794 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (iEdg‘𝑦) = 𝐽)
2120dmeqd 5861 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → dom (iEdg‘𝑦) = dom 𝐽)
2211, 16, 21f1oeq123d 6778 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ↔ 𝑔:dom 𝐼1-1-onto→dom 𝐽))
2315fveq1d 6844 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → ((iEdg‘𝑥)‘𝑖) = (𝐼𝑖))
2423imaeq2d 6013 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑓 “ ((iEdg‘𝑥)‘𝑖)) = (𝑓 “ (𝐼𝑖)))
2520fveq1d 6844 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → ((iEdg‘𝑦)‘(𝑔𝑖)) = (𝐽‘(𝑔𝑖)))
2624, 25eqeq12d 2752 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)) ↔ (𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
2716, 26raleqbidv 3319 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)) ↔ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))
2822, 27anbi12d 631 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))) ↔ (𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
2928exbidv 1924 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))) ↔ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))
3010, 29anbi12d 631 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
3130exbidv 1924 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
32 df-isomgr 46003 . 2 IsomGr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))))}
3331, 32brabga 5491 1 ((𝐴𝑋𝐵𝑌) → (𝐴 IsomGr 𝐵 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∃𝑔(𝑔:dom 𝐼1-1-onto→dom 𝐽 ∧ ∀𝑖 ∈ dom 𝐼(𝑓 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3064   class class class wbr 5105  dom cdm 5633  cima 5636  1-1-ontowf1o 6495  cfv 6496  Vtxcvtx 27947  iEdgciedg 27948   IsomGr cisomgr 46001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3065  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isomgr 46003
This theorem is referenced by:  isisomgr  46006  isomgreqve  46007  isomushgr  46008  isomgrsym  46018  isomgrtr  46021  ushrisomgr  46023
  Copyright terms: Public domain W3C validator