Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgrrel Structured version   Visualization version   GIF version

Theorem isomgrrel 45274
Description: The isomorphy relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.)
Assertion
Ref Expression
isomgrrel Rel IsomGr

Proof of Theorem isomgrrel
Dummy variables 𝑓 𝑔 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isomgr 45273 . 2 IsomGr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))))}
21relopabiv 5730 1 Rel IsomGr
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wex 1782  wral 3064  dom cdm 5589  cima 5592  Rel wrel 5594  1-1-ontowf1o 6432  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367   IsomGr cisomgr 45271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-opab 5137  df-xp 5595  df-rel 5596  df-isomgr 45273
This theorem is referenced by:  isisomgr  45276
  Copyright terms: Public domain W3C validator