Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgrrel Structured version   Visualization version   GIF version

Theorem isomgrrel 46788
Description: The isomorphy relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.)
Assertion
Ref Expression
isomgrrel Rel IsomGr

Proof of Theorem isomgrrel
Dummy variables 𝑓 𝑔 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isomgr 46787 . 2 IsomGr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖))))}
21relopabiv 5819 1 Rel IsomGr
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1539  wex 1779  wral 3059  dom cdm 5675  cima 5678  Rel wrel 5680  1-1-ontowf1o 6541  cfv 6542  Vtxcvtx 28523  iEdgciedg 28524   IsomGr cisomgr 46785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-in 3954  df-ss 3964  df-opab 5210  df-xp 5681  df-rel 5682  df-isomgr 46787
This theorem is referenced by:  isisomgr  46790
  Copyright terms: Public domain W3C validator