Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomgrrel | Structured version Visualization version GIF version |
Description: The isomorphy relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.) |
Ref | Expression |
---|---|
isomgrrel | ⊢ Rel IsomGr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isomgr 44765 | . 2 ⊢ IsomGr = {〈𝑥, 𝑦〉 ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖))))} | |
2 | 1 | relopabiv 5667 | 1 ⊢ Rel IsomGr |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∃wex 1781 ∀wral 3070 dom cdm 5528 “ cima 5531 Rel wrel 5533 –1-1-onto→wf1o 6339 ‘cfv 6340 Vtxcvtx 26902 iEdgciedg 26903 IsomGr cisomgr 44763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-ss 3877 df-opab 5099 df-xp 5534 df-rel 5535 df-isomgr 44765 |
This theorem is referenced by: isisomgr 44768 |
Copyright terms: Public domain | W3C validator |