Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomgrrel | Structured version Visualization version GIF version |
Description: The isomorphy relation for graphs is a relation. (Contributed by AV, 11-Nov-2022.) |
Ref | Expression |
---|---|
isomgrrel | ⊢ Rel IsomGr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isomgr 45161 | . 2 ⊢ IsomGr = {〈𝑥, 𝑦〉 ∣ ∃𝑓(𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ ∃𝑔(𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖))))} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel IsomGr |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∀wral 3063 dom cdm 5580 “ cima 5583 Rel wrel 5585 –1-1-onto→wf1o 6417 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 IsomGr cisomgr 45159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-isomgr 45161 |
This theorem is referenced by: isisomgr 45164 |
Copyright terms: Public domain | W3C validator |